Acta Mathematica

Ergodic complex structures on hyperkähler manifolds

Misha Verbitsky

Full-text: Open access

Abstract

Let M be a compact complex manifold. The corresponding Teichmüller space Teich is the space of all complex structures on M up to the action of the group Diff0(M) of isotopies. The mapping class group Γ:=Diff(M)/Diff0(M) acts on Teich in a natural way. An ergodic complex structure is a complex structure with a Γ-orbit dense in Teich. Let M be a complex torus of complex dimension 2 or a hyperkähler manifold with b2>3. We prove that M is ergodic, unless M has maximal Picard rank (there are countably many such M). This is used to show that all hyperkähler manifolds are Kobayashi non-hyperbolic.

Note

Partially supported by RSCF grant 14-21-00053 within AG Laboratory NRU-HSE.

Article information

Source
Acta Math., Volume 215, Number 1 (2015), 161-182.

Dates
Received: 8 June 2014
Revised: 18 March 2015
First available in Project Euclid: 30 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.acta/1485802445

Digital Object Identifier
doi:10.1007/s11511-015-0131-z

Mathematical Reviews number (MathSciNet)
MR3413979

Zentralblatt MATH identifier
1332.53092

Rights
2015 © Institut Mittag-Leffler

Citation

Verbitsky, Misha. Ergodic complex structures on hyperkähler manifolds. Acta Math. 215 (2015), no. 1, 161--182. doi:10.1007/s11511-015-0131-z. https://projecteuclid.org/euclid.acta/1485802445


Export citation

References

  • Amerik, E. & Verbitsky, M., Rational curves on hyperkähler manifolds. To appear in Int. Math. Res. Not
  • Anan′in S., Verbitsky M.: Any component of moduli of polarized hyperkähler manifolds is dense in its deformation space. J. Math. Pures Appl. 101, 188–197 (2014)
  • Beauville A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18, 755–782 (1983)
  • Besse, A. L., Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, 10. Springer, Berlin–Heidelberg, 1987
  • Bogomolov, F. A., On the decomposition of Kähler manifolds with a trivial canonical class. Mat. Sb., 93 (1974), 573–575 (Russian); English translation in Math. USSR–Sb., 22 (1974), 580–583
  • Bogomolov, F. A., Hamiltonian Kählerian manifolds. Dokl. Akad. Nauk SSSR, 243 (1978), 1101–1104 (Russian); English translation in Soviet Math. Dokl., 19 (1978), 1462–1465
  • Boucksom S.: Le cône kählérien d’une variété hyperkählérienne. C. R. Acad. Sci. Paris Sér. I Math. 333, 935–938 (2001)
  • Brody R.: Compact manifolds and hyperbolicity. Trans. Amer. Math. Soc., 235, 213–219 (1978)
  • Campana F.: Algébricité et compacité dans les espaces de cycles. C. R. Acad. Sci. Paris Sér. A-B 289, A195–A197 (1979)
  • Campana F.: On twistor spaces of the class C. J. Differential Geom. 33, 541–549 (1991)
  • Campana F.: An application of twistor theory to the nonhyperbolicity of certain compact symplectic Kähler manifolds. J. Reine Angew. Math. 425, 1–7 (1992)
  • Catanese, F., A superficial working guide to deformations and moduli, in Handbook of Moduli. Vol. I, Adv. Lect. Math., 24, pp. 161–215. Int. Press, Somerville, MA, 2013
  • Demailly J.-P.: Hyperbolic algebraic varieties and holomorphic differential equations. Acta Math. Vietnam. 37, 441–512 (2012)
  • Deschamps, G., Le Du, N. & Mourougane, C., Hessian of the metric form on twistor spaces. Preprint, 2012.
  • Fujiki, A., On the de Rham cohomology group of a compact Kähler symplectic manifold, in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, pp. 105–165. North-Holland, Amsterdam, 1987
  • Hitchin N.J., Karlhede A., Lindström U., Roček M.: Hyper-Kähler metrics and supersymmetry. Comm. Math. Phys. 108, 535–589 (1987)
  • Huybrechts D.: Compact hyper-Kähler manifolds: basic results. Invent. Math. 135, 63–113 (1999)
  • Huybrechts, D., Erratum: “Compact hyper-Kähler manifolds: basic results” [H1]. Invent. Math., 152 (2003), 209–212
  • Huybrechts D.: The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326, 499–513 (2003)
  • Kaledin D.: Integrability of the twistor space for a hypercomplex manifold. Selecta Math. 4, 271–278 (1998)
  • Kaledin D., Verbitsky M.: Non-Hermitian Yang–Mills connections. Selecta Math. 4, 279–320 (1998)
  • Kamenova L., Verbitsky M.: Families of Lagrangian fibrations on hyperkähler manifolds. Adv. Math. 260, 401–413 (2014)
  • Kleinbock, D., Shah, N. & Starkov, A., Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory, in Handbook of Dynamical Systems, Vol. 1A, pp. 813–930. North-Holland, Amsterdam, 2002
  • Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings. Pure and Applied Mathematics, 2. Marcel Dekker, New York, 1970
  • Lang S.: Introduction to Complex Hyperbolic Spaces. Springer, New York (1987)
  • Markman E.: Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface. Internat. J. Math. 21, 169–223 (2010)
  • Markman, E., A survey of Torelli and monodromy results for holomorphic-symplectic varieties, in Complex and Differential Geometry, Springer Proc. Math., 8, pp. 257–322. Springer, Berlin–Heidelberg, 2011
  • Markman, E. & Mehrotra, S., Hilbert schemes of K3 surfaces are dense in moduli. Preprint, 2012.
  • Moore C.C.: Ergodicity of flows on homogeneous spaces. Amer. J. Math. 88, 154–178 (1966)
  • Morris, D. W., Ratner’s Theorems on Unipotent Flows. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2005
  • Obata M.: Affine connections on manifolds with almost complex, quaternion or Hermitian structure. Japan J. Math. 26, 43–77 (1956)
  • Piatetski-Shapiro, I. I. & Shafarevich, I. R., Torelli’s theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 35 (1971), 530–572 (Russian); English translation in Math. USSR–Izv., 5 (1971), 547–588
  • Salamon S.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982)
  • Shah N.A.: Uniformly distributed orbits of certain flows on homogeneous spaces. Math. Ann. 289, 315–334 (1991)
  • Sullivan, D., Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., (1977), 269–331
  • Verbitsky M.: Cohomology of compact hyper-Kähler manifolds and its applications. Geom. Funct. Anal. 6, 601–611 (1996)
  • Verbitsky M.: Hypercomplex varieties. Comm. Anal. Geom. 7, 355–396 (1999)
  • Verbitsky M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162, 2929–2986 (2013)
  • Verbitsky M.: Rational curves and special metrics on twistor spaces. Geom. Topol. 18, 897–909 (2014)
  • Vinberg, E. B., Gorbatsevich, V. V. & Shvartsman, O. V., Discrete subgroups of Lie groups, in Lie Groups and Lie Algebras, II, Encyclopaedia Math. Sci., 21, pp. 1–123, 217–223. Springer, Berlin–Heidelberg, 2000
  • Voisin, C., On some problems of Kobayashi and Lang; algebraic approaches, in Current Developments in Mathematics, 2003, pp. 53–125. Int. Press, Somerville, MA, 2003
  • Yau S. T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Comm. Pure Appl. Math. 31, 339–411 (1978)