Advances in Applied Probability

Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks

Loïc Hervé and James Ledoux

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let {Xn}nN be a Markov chain on a measurable space X with transition kernel P, and let V : X → [1, +∞). The Markov kernel P is here considered as a linear bounded operator on the weighted-supremum space BV associated with V. Then the combination of quasicompactness arguments with precise analysis of eigenelements of P allows us to estimate the geometric rate of convergence ρV(P) of {Xn}nN to its invariant probability measure in operator norm on BV. A general procedure to compute ρV(P) for discrete Markov random walks with identically distributed bounded increments is specified.

Article information

Source
Adv. in Appl. Probab., Volume 46, Number 4 (2014), 1036-1058.

Dates
First available in Project Euclid: 12 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.aap/1418396242

Digital Object Identifier
doi:10.1239/aap/1418396242

Mathematical Reviews number (MathSciNet)
MR3290428

Zentralblatt MATH identifier
1305.60060

Subjects
Primary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces) 47B07: Operators defined by compactness properties

Keywords
V-geometric ergodicity quasicompactness drift condition birth-and-death Markov chain

Citation

Hervé, Loïc; Ledoux, James. Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks. Adv. in Appl. Probab. 46 (2014), no. 4, 1036--1058. doi:10.1239/aap/1418396242. https://projecteuclid.org/euclid.aap/1418396242


Export citation

References

  • Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob. 15, 700–738.
  • Guibourg, D., Hervé, L. and Ledoux, J. (2011). Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity. Preprint. Available at http://uk.arxiv.org/abs/1110.3240.
  • Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118, 627–634.
  • Hervé, L. and Ledoux, J. (2014). Approximating Markov chains and ${V}$-geometric ergodicity via weak perturbation theory. Stoch. Process. Appl. 124, 613–638.
  • Hordijk, A. and Spieksma, F. (1992). On ergodicity and recurrence properties of a Markov chain with an application to an open Jackson network. Adv. Appl. Prob. 24, 343–376.
  • Klimenok, V. and Dudin, A. (2006). Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems. 54, 245–259.
  • Kontoyiannis, I. and Meyn, S. P. (2003). Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. Appl. Prob. 13, 304–362.
  • Kontoyiannis, I. and Meyn, S. P. (2012). Geometric ergodicity and the spectral gap of non-reversible Markov chains. Prob. Theory Relat. Fields 154, 327–339.
  • Kovchegov, Y. (2009). Orthogonality and probability: beyond nearest neighbor transitions. Electron. Commun. Prob. 14, 90–103.
  • Lund, R. B. and Tweedie, R. L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Operat. Res. 21, 182–194.
  • Malyshev, V. A. and Spieksma, F. M. (1995). Intrinsic convergence rate of countable Markov chains. Markov Process. Relat. Fields 1, 203–266.
  • Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
  • Meyn, S. P. and Tweedie, R. L. (1994). Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Prob. 4, 981–1011.
  • Roberts, G. O. and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stoch. Process. Appl. 80, 211–229. (Corrigendum: 91 (2001), 337–338.)
  • Rosenthal, J. S. (1996). Markov chain convergence: from finite to infinite. Stoch. Process. Appl. 62, 55–72.
  • Van Doorn, E. A. and Schrijner, P. (1995). Geometric ergodicity and quasi-stationarity in discrete-time birth–death processes. J. Austral. Math. Soc. B 37, 121–144.
  • Wu, L. (2004). Essential spectral radius for Markov semigroups. I. Discrete time case. Prob. Theory Relat. Fields 128, 255–321.