Advances in Applied Probability

Random marked sets

F. Ballani, Z. Kabluchko, and M. Schlather

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We aim to link random fields and marked point processes, and, therefore, introduce a new class of stochastic processes which are defined on a random set in Rd. Unlike for random fields, the mark covariance function of a random marked set is in general not positive definite. This implies that in many situations the use of simple geostatistical methods appears to be questionable. Surprisingly, for a special class of processes based on Gaussian random fields, we do have positive definiteness for the corresponding mark covariance function and mark correlation function.

Article information

Source
Adv. in Appl. Probab., Volume 44, Number 3 (2012), 603-616.

Dates
First available in Project Euclid: 6 September 2012

Permanent link to this document
https://projecteuclid.org/euclid.aap/1346955256

Digital Object Identifier
doi:10.1239/aap/1346955256

Mathematical Reviews number (MathSciNet)
MR3024601

Zentralblatt MATH identifier
1266.60091

Subjects
Primary: 60G60: Random fields 60G55: Point processes
Secondary: 60G15: Gaussian processes 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Random field random set marked point process mark correlation function mark covariance function

Citation

Ballani, F.; Kabluchko, Z.; Schlather, M. Random marked sets. Adv. in Appl. Probab. 44 (2012), no. 3, 603--616. doi:10.1239/aap/1346955256. https://projecteuclid.org/euclid.aap/1346955256


Export citation

References

  • Adler, R. J. (1981). The Geometry of Random Fields. John Wiley, Chichester.
  • Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.
  • Ballani, F., Kabluchko, Z. and Schlather, M. (2012). Random marked sets. Preprint. Available at http://arxiv.org/abs/0903.2388v2.
  • Beneš, V. and Rataj, J. (2004). Stochastic Geometry: Selected Topics. Kluwer, Boston, MA.
  • Cramér, H. and Leadbetter, M. R. (1967). Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications. John Wiley, New York.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley, New York.
  • Cressie, N., Frey, J., Harch, B. and Smith, M. (2006). Spatial prediction on a river network. J. Agricultural Biol. Environ. Statist., 11, 127–150.
  • Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes, Vol. II. Springer, New York.
  • Diggle, P. J., Menezes, R. and Su, T.-L. (2010). Geostatistical inference under preferential sampling. J. R. Statist. Soc. C 59, 191–232.
  • Diggle, P. J., Ribeiro, P. J., Jr. and Christensen, O. F. (2003). An introduction to model-based geostatistics. In Spatial Statistics and Computational Methods (Aalborg, 2001; Lecture Notes Statist. 173), ed. J. Møller, Springer, New York, pp. 43–86.
  • Guan, Y., Sherman, M. and Calvin, J. A. (2004). A nonparametric test for spatial isotropy using subsampling. J. Amer. Statist. Assoc. 99, 810–821.
  • Hug, D., Last, G. and Weil, W. (2004). A local Steiner-type formula for general closed sets and applications. Math. Z. 246, 237–272.
  • Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley, Chichester.
  • Kangas, A. and Maltamo, M. (2006). Forest Inventory: Methodology and Applications. Springer, Dordrecht.
  • Kraynik, A. M. (1988). Foam flows. Ann. Rev. Fluid Mech. 20, 325–357.
  • Liski, J. and Westman, C. J. (1997). Carbon storage in forest soil of Finland. Biogeochemistry 36, 239–260.
  • Matheron, G. (1969). Théorie des ensembles aléatoires. In Les Cahiers du Centre Morphologie Mathematique de Fontainebleau, Fasc. 4, Ecole des Mines de Paris.
  • Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.
  • Molchanov, I. (1983). Labelled random sets. Teor. Veroyat. Matem. Statist. 29, 93–98 (in Russian). English translation: Theory Prob. Math. Statist. 29 (1984), 113–119.
  • Molchanov, I. (2005). Theory of Random Sets. Springer, London.
  • Pólya, G. (1949). Remarks on characteristic functions. In Proc. Berkeley Symp. on Mathematical Statistics and Probability, ed. J. Neyman, University of California Press, pp. 115–123.
  • Sasvári, Z. (1994). Positive Definite and Definitizable Functions. Akademie, Berlin.
  • Schlather, M. (2001). On the second-order characteristics of marked point processes. Bernoulli 7, 99–117.
  • Schlather, M., Ribeiro, P. J., Jr. and Diggle, P. J. (2004). Detecting dependence between marks and locations of marked point processes. J. R. Statist. Soc. B 66, 79–93.
  • Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, London.
  • Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications. John Wiley, Chichester.
  • Takahata, H. (1994). Nonparametric density estimation for a class of marked point processes. Yokohama Math. J. 41, 127–152.
  • Wälder, O. and Stoyan, D. (1996). On variograms in point process statistics. Biometrical J. 38, 895–905.
  • Wallerman, J., Joyce, S., Vencatasawmy, C. P. and Olsson, H. (2002). Prediction of forest stem volume using kriging adapted to detected edges. Canad. J. Forest Res. 32, 509–518.