Advances in Applied Probability

Stein's method and stochastic orderings

Fraser Daly, Claude Lefèvre, and Sergey Utev

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A stochastic ordering approach is applied with Stein's method for approximation by the equilibrium distribution of a birth-death process. The usual stochastic order and the more general s-convex orders are discussed. Attention is focused on Poisson and translated Poisson approximations of a sum of dependent Bernoulli random variables, for example, k-runs in independent and identically distributed Bernoulli trials. Other applications include approximation by polynomial birth-death distributions.

Article information

Adv. in Appl. Probab., Volume 44, Number 2 (2012), 343-372.

First available in Project Euclid: 16 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62E17: Approximations to distributions (nonasymptotic)
Secondary: 60F05: Central limit and other weak theorems 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Stein's method birth-death process stochastic ordering total variation distance (in)dependent indicators (translated) Poisson approximation total negative and positive dependence (approximate) local dependence polynomial birth-death approximation k-runs


Daly, Fraser; Lefèvre, Claude; Utev, Sergey. Stein's method and stochastic orderings. Adv. in Appl. Probab. 44 (2012), no. 2, 343--372. doi:10.1239/aap/1339878715.

Export citation


  • Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: the Chen–Stein method. Ann. Prob. 17, 9–25.
  • Barbour, A. D. and Chen, L. H. Y. (eds) (2005). An Introduction to Stein's Method (Lecture Notes Ser., Inst. Math. Sci. 4), Singapore University Press.
  • Barbour, A. D. and Jensen, J. L. (1989). Local and tail approximations near the Poisson limit. Scand. J. Statist. 16, 75–87.
  • Barbour, A. D. and Pugliese, A. (2000). On the variance-to-mean ratio in models of parasite distributions. Adv. Appl. Prob. 32, 701–719.
  • Barbour, A. D. and Xia, A. (1999). Poisson perturbations. ESAIM Prob. Statist. 3, 131–150.
  • Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford University Press.
  • Brown, T. C. and Phillips, M. J. (1999). Negative binomial approximation with Stein's method. Methodology Comput. Appl. Prob. 1, 407–421.
  • Brown, T. C. and Xia, A. (2001). Stein's method and birth–death processes. Ann. Prob. 29, 1373–1403.
  • Čekanavičius, V. and Va\v\i tkus, P. (2001). Centered Poisson approximation via Stein's method. Lithuanian Math. J. 41, 319–329.
  • Chatterjee, S., Diaconis, P. and Meckes, E. (2005). Exchangeable pairs and Poisson approximation. Prob. Surveys 2, 64–106.
  • Chen, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Prob. 3, 534–545.
  • Chen, L. H. Y., Goldstein, L. and Shao Q.-M. (2011). Normal Approximation by Stein's Method. Springer, Heidelberg.
  • Denuit, M. and Lefèvre, C. (1997). Some new classes of stochastic order relations among arithmetic random variables, with applications in actuarial sciences. Insurance Math. Econom. 20, 197–213.
  • Ehm, W. (1991). Binomial approximation to the Poisson binomial distribution. Statist. Prob. Lett. 11, 7–16.
  • Eichelsbacher, P. and Reinert, G. (2008). Stein's method for discrete Gibbs measures. Ann. Appl. Prob. 18, 1588–1618.
  • Erhardsson, T. (2005). Stein's method for Poisson and compound Poisson approximation. In An Introduction to Stein's Method (Lecture Notes Ser., Inst. Math. Sci. 4), eds A. D. Barbour and L. H. Y. Chen, Singapore University Press, pp. 61–113.
  • Goldstein, L. and Rinott, Y. (1996). Multivariate normal approximations by Stein's method and size bias couplings. J. Appl. Prob. 33, 1–17.
  • Holmes, S. (2004). Stein's method for birth and death chains. In Stein's Method: Expository Lectures and Applications (IMS Lecture Notes Monogr. Ser. 46), eds P. Diaconis and S. Holmes, Beachwood, OH, pp. 45–67.
  • Johnson, N. L., Kotz, S. and Kemp, A. W. (1992). Univariate Discrete Distributions. John Wiley, New York.
  • Kamae, T., Krengel, U. and O'Brien, G. L. (1977). Stochastic inequalities on partially ordered spaces. Ann. Prob. 5, 899–912.
  • Lefèvre, C. and Utev, S. (1996). Comparing sums of exchangeable Bernoulli random variables. J. Appl. Prob. 33, 285–310.
  • Papadatos, N. and Papathanasiou, V. (2002). Poisson approximation for a sum of dependent indicators: an alternative approach. Adv. Appl. Prob. 34, 609–625.
  • Peköz, E. A. (1996). Stein's method for geometric approximation. J. Appl. Prob. 33, 707–713.
  • Phillips, M. J. and Weinberg, G. V. (2000). Non-uniform bounds for geometric approximation. Statist. Prob. Lett. 49, 305–311.
  • Reinert, G. (2005). Three general approaches to Stein's method. In An Introduction to Stein's Method (Lecture Notes Ser., Inst. Math. Sci. 4), eds A. D. Barbour and L. H. Y. Chen, Singapore University Press, pp. 183–221.
  • Röllin, A. (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11, 1115–1128.
  • Röllin, A. (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Prob. 17, 1596–1614.
  • Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.
  • Stein, C. (1986). Approximate Computation of Expectations (IMS Lecture Notes Monogr. Ser. 7). Institute of Mathematical Statistics, Hayward, CA.
  • Wang, X. and Xia, A. (2008). On negative binomial approximation to $k$-runs. J. Appl. Prob. 45, 456–471. \endharvreferences