## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2015, Special Issue (2015), Article ID 628310, 7 pages.

### A Homotopy-Analysis Approach for Nonlinear Wave-Like Equations with Variable Coefficients

**Full-text: Access denied (no subscription detected) **

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

#### Abstract

We are interested in the approximate analytical solutions of the wave-like nonlinear equations with variable coefficients. We use a wave operator, which provides a convenient way of controlling all initial and boundary conditions. The proposed choice of the auxiliary operator helps to find the approximate series solution without any discretization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2015, Special Issue (2015), Article ID 628310, 7 pages.

**Dates**

First available in Project Euclid: 13 October 2015

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1444742646

**Digital Object Identifier**

doi:10.1155/2015/628310

**Mathematical Reviews number (MathSciNet)**

MR3407011

**Zentralblatt MATH identifier**

1348.35215

#### Citation

Aslanov, Afgan. A Homotopy-Analysis Approach for Nonlinear Wave-Like Equations with Variable Coefficients. Abstr. Appl. Anal. 2015, Special Issue (2015), Article ID 628310, 7 pages. doi:10.1155/2015/628310. https://projecteuclid.org/euclid.aaa/1444742646

#### References

- P. J. Caudrey, J. C. Eilbeck, and J. D. Gibbon, “The sine-Gordon equation as a model classical field theory,”
*Il Nuovo Cimento B*, vol. 25, no. 2, pp. 497–512, 1975. - R. K. Dodd, I. C. Eilbeck, and J. D. Gibbon,
*Solitons and Nonlinear Wave Equations*, Academic Press, London, UK, 1982.Mathematical Reviews (MathSciNet): MR696935 - J. R. Holliday, J. B. Rundle, K. F. Tiampo, W. Klein, and A. Donnellan, “Modification of the pattern informatics method for forecasting large earthquake events using complex eigenfactors,”
*Tectonophysics*, vol. 413, no. 1-2, pp. 87–91, 2006. - A. A. Akhmetov, “Long current loops as regular solutions of the equation for coupling currents in a flat two-layer superconducting cable,”
*Cryogenics*, vol. 43, no. 3–5, pp. 317–322, 2003. - G. D. Manolis and T. V. Rangelov, “Non-homogeneous elastic waves in soils: notes on the vector decomposition technique,”
*Soil Dynamics and Earthquake Engineering*, vol. 26, no. 10, pp. 952–959, 2006. - A. R. Manwell,
*The Tricomi Equation with Applications to the Theory of Plane Transonic Flow*, Pitman, Marshfield, Mass, USA, 1979. - A. V. Bitsadze,
*Some Classes of Partial Differential Equations*, Gordon & Breach, 1988, (Russian).Mathematical Reviews (MathSciNet): MR1052404 - L. D. Landau and E. M. Lifshitz,
*Fluid Mechanics*, Pergamon Press, 1982. - A.-M. Wazwaz, “The tanh method: exact solutions of the sine-GORdon and the sinh-GORdon equations,”
*Applied Mathematics and Computation*, vol. 167, no. 2, pp. 1196–1210, 2005.Mathematical Reviews (MathSciNet): MR2169761

Zentralblatt MATH: 1082.65585

Digital Object Identifier: doi:10.1016/j.amc.2004.08.005 - D. Kaya, “A numerical solution of the sine-Gordon equation using the modified decomposition method,”
*Applied Mathematics and Computation*, vol. 143, no. 2-3, pp. 309–317, 2003.Mathematical Reviews (MathSciNet): MR1981698

Zentralblatt MATH: 1022.65114

Digital Object Identifier: doi:10.1016/S0096-3003(02)00363-6 - A. Aslanov, “The homotopy-perturbation method for solving klein-gordon-type equations with unbounded right-hand side,”
*Zeitschrift für Naturforschung Section A*, vol. 64, no. 1-2, pp. 149–152, 2009. - S. M. El-Sayed, “The decomposition method for studying the Klein-Gordon equation,”
*Chaos, Solitons & Fractals*, vol. 18, no. 5, pp. 1025–1030, 2003.Mathematical Reviews (MathSciNet): MR1988710

Zentralblatt MATH: 1068.35069

Digital Object Identifier: doi:10.1016/S0960-0779(02)00647-1 - A.-M. Wazwaz and A. Gorguis, “Exact solutions for heat-like and wave-like equations with variable coefficients,”
*Applied Mathematics and Computation*, vol. 149, no. 1, pp. 15–29, 2004.Mathematical Reviews (MathSciNet): MR2030981

Zentralblatt MATH: 1038.65103

Digital Object Identifier: doi:10.1016/S0096-3003(02)00946-3 - S. J. Liao,
*The proposed homotopy analysis technique for the solution of nonlinear problems [Ph.D. thesis]*, Shanghai Jiao Tong University, Shanghai, China, 1992. - S.-J. Liao, “An approximate solution technique not depending on small parameters: a special example,”
*International Journal of Non-Linear Mechanics*, vol. 30, no. 3, pp. 371–380, 1995.Mathematical Reviews (MathSciNet): MR1336915

Zentralblatt MATH: 0837.76073

Digital Object Identifier: doi:10.1016/0020-7462(94)00054-E - S.-J. Liao, “A kind of approximate solution technique which does not depend upon small parameters–-II. An application in fluid mechanics,”
*International Journal of Non-Linear Mechanics*, vol. 32, no. 5, pp. 815–822, 1997.Mathematical Reviews (MathSciNet): MR1459007

Digital Object Identifier: doi:10.1016/S0020-7462(96)00101-1 - S. J. Liao,
*Beyond Perturbation: Introduction to the Homotopy Analysis Method*, Chapman & Hall, CRC, Boca Raton, Fla, USA, 2003. - S. J. Liao, “An optimal homotopy-analysis approach for strongly nonlinear differential equations,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 15, no. 8, pp. 2003–2016, 2010.Mathematical Reviews (MathSciNet): MR2592613

Zentralblatt MATH: 1222.65088

Digital Object Identifier: doi:10.1016/j.cnsns.2009.09.002 - T. M. Hayat and M. Sajid, “On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder,”
*Physics Letters A: General, Atomic and Solid State Physics*, vol. 361, no. 4-5, pp. 316–322, 2007. - S. Abbasbandy, “The application of homotopy analysis method to nonlinear equations arising in heat transfer,”
*Physics Letters A*, vol. 360, no. 1, pp. 109–113, 2006.Mathematical Reviews (MathSciNet): MR2288118

Zentralblatt MATH: 1236.80010

Digital Object Identifier: doi:10.1016/j.physleta.2006.07.065 - A. Aslanov, “Homotopy perturbation method for solving wave-like nonlinear equations with initial-boundary conditions,”
*Dis-crete Dynamics in Nature and Society*, vol. 2011, Article ID 534165, 10 pages, 2011.Mathematical Reviews (MathSciNet): MR2838432

Digital Object Identifier: doi:10.1155/2011/534165

Zentralblatt MATH: 1232.65168 - R. Rajaraman, “Analytical solutions for some of the nonlinear hyperbolic-like equations with variable conditions,”
*Global Journal of Science Frontier Research Mathematics and Decision Sciences*, vol. 12, no. 5, pp. 54–60, 2012. - A. K. Alomari, M. S. M. Noorani, and R. Nazar, “Solutions of heat-like and wave-like equations with variable coefficients by means of the homotopy analysis method,”
*Chinese Physics Letters*, vol. 25, no. 2, pp. 589–592, 2008. - T. Öziş and D. Ağ\irseven, “He's homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients,”
*Physics Letters A*, vol. 372, no. 38, pp. 5944–5950, 2008.Mathematical Reviews (MathSciNet): MR2458895

Zentralblatt MATH: 1223.35294

Digital Object Identifier: doi:10.1016/j.physleta.2008.07.060 - E. M. E. Zayed, T. A. Nofal, and K. A. Gepreel, “The homotopy perturbation method for solving nonlinear Burgers and new coupled MKdV equations,”
*Zeitschrift für Naturforschung A*, vol. 63, pp. 627–633, 2008. - E. M. E. Zayed, T. A. Nofal, and K. A. Gepreel, “Homotopy perturbation and Adomain decomposition methods for solving nonlinear Boussinesq equations,”
*Communications on Applied Nonlinear Analysis*, vol. 15, no. 3, pp. 57–70, 2008. - E. M. E. Zayed, T. A. Nofal, and K. A. Gepreel, “On using the homotopy perturbation method for finding the traveling wave solutions of generalized nonlinear Hirota-Satsuma coupled KdV equations,”
*International Journal of Nonlinear Science*, vol. 7, no. 2, pp. 159–166, 2009.Mathematical Reviews (MathSciNet): MR2496725 - E. M. Zayed, T. A. Nofal, and K. A. Gepreel, “The travelling wave solutions for non-linear initial-value problems using the homotopy perturbation method,”
*Applicable Analysis*, vol. 88, no. 4, pp. 617–634, 2009.Mathematical Reviews (MathSciNet): MR2541144

Digital Object Identifier: doi:10.1080/00036810902943604

Zentralblatt MATH: 1167.35493 - E. M. E. Zayed and H. M. Abdel-Rahman, “The homotopy perturbation method and the Adomian decomposition method for the nonlinear coupled equations,”
*Journal of Partial Differential Equations*, vol. 22, no. 4, pp. 334–351, 2009. - E. M. E. Zayed and H. M. Abdel Rahman, “The variational iteration method and the variational homotopy perturbation method for solving the KdV-Burgers equation and the Sharma-Tasso-Olver equation,”
*Zeitschrift für Naturforschung A*, vol. 65, no. 1, pp. 25–33, 2010. - E. M. E. Zayed and H. M. Abdel Rahman, “The homotopy analysis method for solving the nonlinear evolution equations in mathematical physics,”
*Communications on Applied Nonlinear Analysis*, vol. 18, no. 3, pp. 53–70, 2011. - W. A. Strauss,
*Partial Differential Equations*, John Wiley & Sons, New York, NY, USA, 1992. \endinputMathematical Reviews (MathSciNet): MR1159712

### More like this

- Solution of the Differential-Difference Equations by Optimal Homotopy Asymptotic Method

Ullah, H., Islam, S., Idrees, M., and Fiza, M., Abstract and Applied Analysis, 2014 - Direct Solution of nth-Order IVPs by Homotopy Analysis Method

Bataineh, A. Sami, Noorani, M. S. M., and Hashim, I., Differential Equations and Nonlinear Mechanics, 2009 - Approximate Analytic Solution for the KdV and Burger Equations with the Homotopy
Analysis Method

Nazari, Mojtaba, Salah, Faisal, Abdul Aziz, Zainal, and Nilashi, Merbakhsh, Journal of Applied Mathematics, 2012

- Solution of the Differential-Difference Equations by Optimal Homotopy Asymptotic Method

Ullah, H., Islam, S., Idrees, M., and Fiza, M., Abstract and Applied Analysis, 2014 - Direct Solution of nth-Order IVPs by Homotopy Analysis Method

Bataineh, A. Sami, Noorani, M. S. M., and Hashim, I., Differential Equations and Nonlinear Mechanics, 2009 - Approximate Analytic Solution for the KdV and Burger Equations with the Homotopy
Analysis Method

Nazari, Mojtaba, Salah, Faisal, Abdul Aziz, Zainal, and Nilashi, Merbakhsh, Journal of Applied Mathematics, 2012 - Approximate Analytical Solution for the Forced Korteweg-de Vries Equation

David, Vincent Daniel, Nazari, Mojtaba, Barati, Vahid, Salah, Faisal, and Abdul Aziz, Zainal, Journal of Applied Mathematics, 2013 - Numerical Simulation of Fractional Fornberg-Whitham Equation by Differential Transformation Method

Merdan, Mehmet, Gökdoğan, Ahmet, Yıldırım, Ahmet, and Mohyud-Din, Syed Tauseef, Abstract and Applied Analysis, 2012 - On Complex Singularity Analysis for Some Linear Partial Differential
Equations in
ℂ
3

Lastra, A., Malek, S., and Stenger, C., Abstract and Applied Analysis, 2013 - On the Numerical Solution of One-Dimensional Nonlinear Nonhomogeneous Burgers’ Equation

Sarboland, Maryam and Aminataei, Azim, Journal of Applied Mathematics, 2014 - On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative

Merdan, Mehmet, International Journal of Differential Equations, 2012 - Application of Residual Power Series Method to Fractional Coupled Physical Equations Arising in Fluids Flow

Arafa, Anas and Elmahdy, Ghada, International Journal of Differential Equations, 2018 - Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations

Elbeleze, Asma Ali, Kılıçman, Adem, and Taib, Bachok M., Abstract and Applied Analysis, 2014