Abstract and Applied Analysis
- Abstr. Appl. Anal.
- Volume 2014, Special Issue (2014), Article ID 589731, 9 pages.
A Continuous Trust-Region-Type Method for Solving Nonlinear Semidefinite Complementarity Problem
Ying Ji, Tienan Wang, and Yijun Li
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
We propose a new method to solve nonlinear semidefinite complementarity problem by combining a continuous method and a trust-region-type method. At every iteration, we need to calculate a second-order cone subproblem. We show the well-definedness of the method. The global convergent result is established.
Article information
Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 589731, 9 pages.
Dates
First available in Project Euclid: 6 October 2014
Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606936
Digital Object Identifier
doi:10.1155/2014/589731
Mathematical Reviews number (MathSciNet)
MR3208548
Zentralblatt MATH identifier
07022667
Citation
Ji, Ying; Wang, Tienan; Li, Yijun. A Continuous Trust-Region-Type Method for Solving Nonlinear Semidefinite Complementarity Problem. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 589731, 9 pages. doi:10.1155/2014/589731. https://projecteuclid.org/euclid.aaa/1412606936
References
- M. S. Gowda and Y. Song, “On semidefinite linear complementarity problems,” Mathematical Programming. A Publication of the Mathematical Programming Society, vol. 88, no. 3, pp. 575–587, 2000.Mathematical Reviews (MathSciNet): MR1782157
Zentralblatt MATH: 0987.90082
Digital Object Identifier: doi:10.1007/PL00011387 - M. Shibata, N. Yamashita, and M. Fukushima, “The extended semidefinite linear complementarity problem: a reformulation approach,” in Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka, Eds., pp. 326–332, World Scientific, Singapore, 1999.
- X. Chen and P. Tseng, “Non-interior continuation methods for solving semidefinite complementarity problems,” Mathematical Programming. A Publication of the Mathematical Programming Society, vol. 95, no. 3, pp. 431–474, 2003.Mathematical Reviews (MathSciNet): MR1969760
Zentralblatt MATH: 1023.90046
Digital Object Identifier: doi:10.1007/s10107-002-0306-1 - P. Tseng, “Merit functions for semi-definite complementarity problems,” Mathematical Programming, vol. 83, no. 2, pp. 159–185, 1998.
- Z. H. Huang and J. Y. Han, “Non-interior continuation method for solving the monotone semidefinite complementarity problem,” Applied Mathematics and Optimization, vol. 47, no. 3, pp. 195–211, 2003.Mathematical Reviews (MathSciNet): MR1974386
Zentralblatt MATH: 1030.65069
Digital Object Identifier: doi:10.1007/s00245-003-0765-7 - N. Yamashita and M. Fukushima, “A new merit function and a descent method for semidefinite complementarity problems,” in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, M. Fukushima and L. Qi, Eds., vol. 22, pp. 405–420, Kluwer Academic, Dordrecht, The Netherlands, 1999.Mathematical Reviews (MathSciNet): MR1682743
Zentralblatt MATH: 0969.90087
Digital Object Identifier: doi:10.1007/978-1-4757-6388-1_21 - S.-J. Qu, M. Goh, and X. Zhang, “A new hybrid method for nonlinear complementarity problems,” Computational Optimization and Applications, vol. 49, no. 3, pp. 493–520, 2011.Mathematical Reviews (MathSciNet): MR2803862
Zentralblatt MATH: 1242.90264
Digital Object Identifier: doi:10.1007/s10589-009-9309-7 - Y. Ji, K.-C. Zhang, S.-J. Qu, and Y. Zhou, “A trust-region method by active-set strategy for general nonlinear optimization,” Computers & Mathematics with Applications, vol. 54, no. 2, pp. 229–241, 2007.
- C. Kanzow, “Some noninterior continuation methods for linear complementarity problems,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 851–868, 1996.Mathematical Reviews (MathSciNet): MR1410705
Zentralblatt MATH: 0868.90123
Digital Object Identifier: doi:10.1137/S0895479894273134 - F. Palacios-Gomez, L. Lasdon, and M. Engquist, “Nonlinear optimization by successive linear programming,” Management Science, vol. 28, no. 10, pp. 1106–1120, 1982.
- J. Z. Zhang, N.-H. Kim, and L. Lasdon, “An improved successive linear programming algorithm,” Management Science, vol. 31, no. 10, pp. 1312–1331, 1985.Mathematical Reviews (MathSciNet): MR815628
Zentralblatt MATH: 0601.90128
Digital Object Identifier: doi:10.1287/mnsc.31.10.1312 - C. Kanzow, C. Nagel, H. Kato, and M. Fukushima, “Successive linearization methods for nonlinear semidefinite programs,” Computational Optimization and Applications, vol. 31, no. 3, pp. 251–273, 2005.Mathematical Reviews (MathSciNet): MR2160696
Zentralblatt MATH: 1122.90058
Digital Object Identifier: doi:10.1007/s10589-005-3231-4 - A. Fischer, “Solution of monotone complementarity problems with locally Lipschitzian functions,” Mathematical Programming, vol. 76, no. 3, pp. 513–532, 1997.
- K. C. Toh, R. H. Tutuncij, and M. J. Todd, SDPT3 version 3.02-a MATLAB software for semidefinite-quadratic-linearprogramming, 2002, http://www.math.nus.edu.sg/$\sim\,\!$mattohkc/ sdpt3.html.URL: Link to item
- Z. S. Yu, “A descent algorithm for the extended semidefinite linear complementarity problem,” International Journal of Nonlinear Science, vol. 5, no. 1, pp. 89–96, 2008. \endinputMathematical Reviews (MathSciNet): MR2373427
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- One-step smoothing inexact Newton method for nonlinear
complementarity problem with a $P_0$ function
Wu, Caiying and Zhao, Yue, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2012 - An Improved Nonmonotone Filter Trust Region Method for Equality Constrained
Optimization
Jin, Zhong, Abstract and Applied Analysis, 2013 - A Smoothing Method with Appropriate Parameter Control Based on Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
Narushima, Yasushi, Ogasawara, Hideho, and Hayashi, Shunsuke, Abstract and Applied Analysis, 2012
- One-step smoothing inexact Newton method for nonlinear
complementarity problem with a $P_0$ function
Wu, Caiying and Zhao, Yue, Bulletin of the Belgian Mathematical Society - Simon Stevin, 2012 - An Improved Nonmonotone Filter Trust Region Method for Equality Constrained
Optimization
Jin, Zhong, Abstract and Applied Analysis, 2013 - A Smoothing Method with Appropriate Parameter Control Based on Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
Narushima, Yasushi, Ogasawara, Hideho, and Hayashi, Shunsuke, Abstract and Applied Analysis, 2012 - A Newton-Like Trust Region Method for Large-Scale Unconstrained Nonconvex
Minimization
Weiwei, Yang, Yueting, Yang, Chenhui, Zhang, and Mingyuan, Cao, Abstract and Applied Analysis, 2013 - A Smoothing Inexact Newton Method for Nonlinear Complementarity Problems
Wan, Zhong, Li, HuanHuan, and Huang, Shuai, Abstract and Applied Analysis, 2015 - Parallel Variable Distribution Algorithm for Constrained Optimization with Nonmonotone Technique
Han, Congying, Feng, Tingting, He, Guoping, and Guo, Tiande, Journal of Applied Mathematics, 2013 - Improved Filter-SQP Algorithm with Active Set for Constrained Minimax Problems
Luo, Zhijun and Wang, Lirong, Journal of Applied Mathematics, 2014 - A Conjugate Gradient Type Method for the Nonnegative Constraints Optimization Problems
Li, Can, Journal of Applied Mathematics, 2013 - A Two-Parametric Class of Merit Functions for the Second-Order
Cone Complementarity Problem
Chi, Xiaoni, Wan, Zhongping, and Hao, Zijun, Journal of Applied Mathematics, 2013 - Global Convergence of a New Nonmonotone Filter Method for Equality Constrained Optimization
Su, Ke, Liu, Wei, and Lu, Xiaoli, Journal of Applied Mathematics, 2013