Abstract and Applied Analysis

Parameter Estimation for Long-Memory Stochastic Volatility at Discrete Observation

Xiaohui Wang and Weiguo Zhang

Full-text: Open access

Abstract

Ordinary least squares estimators of variogram parameters in long-memory stochastic volatility are studied in this paper. We use the discrete observations for practical purposes under the assumption that the Hurst parameter H ( 1 / 2,1 ) is known. Based on the ordinary least squares method, we obtain both the explicit estimators for drift and diffusion by minimizing the distance function between the variogram and the data periodogram. Furthermore, the resulting estimators are shown to be consistent and to have the asymptotic normality. Numerical examples are also presented to illustrate the performance of our method.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 462982, 10 pages.

Dates
First available in Project Euclid: 6 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412606752

Digital Object Identifier
doi:10.1155/2014/462982

Mathematical Reviews number (MathSciNet)
MR3191043

Zentralblatt MATH identifier
07022427

Citation

Wang, Xiaohui; Zhang, Weiguo. Parameter Estimation for Long-Memory Stochastic Volatility at Discrete Observation. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 462982, 10 pages. doi:10.1155/2014/462982. https://projecteuclid.org/euclid.aaa/1412606752


Export citation

References

  • S. J. Taylor, Modeling Financial Time Series, John Wiley & Sons, Chichester, UK, 1986.
  • P. M. Robinson, Time Series with Long Memory, Advanced Texts in Econometrics, Oxford University Press, Oxford, UK, 2003.
  • F. J. Breidt, N. Crato, and P. de Lima, “The detection and estimation of long memory in stochastic volatility,” Journal of Econometrics, vol. 83, no. 1-2, pp. 325–348, 1998.
  • A. C. Harvey, “Long memory in stochastic volatility,” in Forecasting Volatility in Financial Markets, pp. 307–320, Butterworth-Haineman, Oxford, UK, 2002.
  • P. M. Robinson and P. Zaffaroni, “Nonlinear time series with long memory: a model for stochastic volatility,” Journal of Statistical Planning and Inference, vol. 68, no. 2, pp. 359–371, 1998.
  • F. Comte and E. Renault, “Long memory in continuous-time stochastic volatility models,” Mathematical Finance, vol. 8, no. 4, pp. 291–323, 1998.
  • F. Comte, L. Coutin, and E. Renault, “Affine fractional stochastic volatility models,” Annals of Finance, vol. 8, no. 2-3, pp. 337–378, 2012.
  • A. Chronopoulou and F. G. Viens, “Estimation and pricing under long-memory stochastic volatility,” Annals of Finance, vol. 8, no. 2-3, pp. 379–403, 2012.
  • J. Geweke and S. Porter-Hudak, “The estimation and application of long memory time series models,” Journal of Time Series Analysis, vol. 4, no. 4, pp. 221–238, 1983.
  • R. S. Deo and C. M. Hurvich, “On the log periodogram regression estimator of the memory parameter in long memory stochastic volatility models,” Econometric Theory, vol. 17, no. 4, pp. 686–710, 2001.
  • J. Arteche, “Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models,” Journal of Econometrics, vol. 119, no. 1, pp. 131–154, 2004.
  • W. W. Chen and R. S. Deo, “Power transformations to induce normality and their applications,” Journal of the Royal Statistical Society. Series B. Statistical Methodology, vol. 66, no. 1, pp. 117–130, 2004.
  • P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer Series in Statistics, Springer, New York, NY, USA, 2nd edition, 2009.
  • I. Casas and J. Gao, “Econometric estimation in long-range dependent volatility models: theory and practice,” Journal of Econometrics, vol. 147, no. 1, pp. 72–83, 2008.
  • A. Chronopoulou and F. G. Viens, “Stochastic volatility and option pricing with long-memory in discrete and continuous time,” Quantitative Finance, vol. 12, no. 4, pp. 635–649, 2012.
  • P. Cheridito, H. Kawaguchi, and M. Maejima, “Fractional Ornstein-Uhlenbeck processes,” Electronic Journal of Probability, vol. 8, no. 3, pp. 1–14, 2003.
  • W. Xiao, W. Zhang, and W. Xu, “Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation,” Applied Mathematical Modelling, vol. 35, no. 9, pp. 4196–4207, 2011.
  • Y. Hu and D. Nualart, “Parameter estimation for fractional Ornstein-Uhlenbeck processes,” Statistics & Probability Letters, vol. 80, no. 11-12, pp. 1030–1038, 2010.
  • M. Rosenbaum, “Estimation of the volatility persistence in a discretely observed diffusion model,” Stochastic Processes and Their Applications, vol. 118, no. 8, pp. 1434–1462, 2008.
  • F. G. Viens, “Portfolio optimization under partially observed stochastic volatility,” in Proceedings of the 8th International Conference on Advances in Communication and Control (COMCON '02), W. Wells, Ed., pp. 1–12, Optimization Software, Inc., 2002.
  • L. Scott, “Option pricing when the variance changes randomly: theory, estimation, and an application,” Journal of Financial and Quantitative Analysis, vol. 22, no. 3, pp. 419–438, 1987.
  • I. Nourdin, “Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire,” Comptes Rendus de l'Académie des Sciences. Series I. Mathematics, vol. 340, no. 8, pp. 611–614, 2005.
  • A. Neuenkirch and I. Nourdin, “Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion,” Journal of Theoretical Probability, vol. 20, no. 4, pp. 871–899, 2007.
  • Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, vol. 1929 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2008.
  • R. Belfadli, K. Es-Sebaiy, and Y. Ouknine, “Parameter estimation for fractional čommentComment on ref. [25?]: Please update the information of this reference, if possible.Ornstein-Uhlenbeck processes: non-ergodic case,” http://arxiv.org/abs/1102.5491.
  • S. N. Lahiri, Y. Lee, and N. Cressie, “On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters,” Journal of Statistical Planning and Inference, vol. 103, no. 1-2, pp. 65–85, 2002.
  • V. Paxson, “Fast approximate synthesis of fractional Gaussian noise for generating self-similar network traffic,” Computer Communication Review, vol. 27, no. 5, pp. 5–18, 1997.
  • A. R. Hall, Generalized Method of Moments, Advanced Texts in Econometrics, Oxford University Press, Oxford, UK, 2005.
  • D. Nualart, “Fractional Brownian motion: stochastic calculus and applications,” in International Congress of Mathematicians. Vol. III, pp. 1541–1562, European Mathematical Society, Zürich, Switzerland, 2006. \endinput