Abstract and Applied Analysis

Sobolev-Type Spaces on the Dual of the Chébli-Trimèche Hypergroup and Applications

Mourad Jelassi and Hatem Mejjaoli

Full-text: Open access


We define and study Sobolev-type spaces W A s , p + associated with singular second-order differential operator on 0 , . Some properties are given; in particular we establish a compactness-type imbedding result which allows a Reillich-type theorem. Next, we introduce a generalized Weierstrass transform and, using the theory of reproducing kernels, some applications are given.

Article information

Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 248725, 13 pages.

First available in Project Euclid: 6 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Jelassi, Mourad; Mejjaoli, Hatem. Sobolev-Type Spaces on the Dual of the Chébli-Trimèche Hypergroup and Applications. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 248725, 13 pages. doi:10.1155/2014/248725. https://projecteuclid.org/euclid.aaa/1412606525

Export citation


  • W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, vol. 20 of de Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, Germany, 1995.
  • M. Assal and M. M. Nessibi, “Bessel-Sobolev type spaces,” Mathematica Balkanica, vol. 18, no. 3-4, pp. 227–234, 2004.
  • N. Ben Salem and A. Dachraoui, “Sobolev type spaces associated with the Jacobi operator,” Integral Transforms and Special Functions, vol. 7, no. 1, 1998.
  • W. R. Bloom and Z. Xu, “Fourier multipliers for local Hardy spaces on Chébli-Trimèche hypergroups,” Canadian Journal of Mathematics, vol. 50, no. 5, pp. 897–928, 1998.
  • M. Dziri, M. Jelassi, and L. T. Rachdi, “Spaces of $D{L}_{p}$ type and a convolution product associated with a singular second order differential operator,” Journal of Concrete and Applicable Mathematics, vol. 10, no. 3-4, pp. 207–232, 2012.
  • K. Trimèche, “Inversion of the Lions transmutation operators using generalized wavelets,” Applied and Computational Harmonic Analysis, vol. 4, no. 1, pp. 97–112, 1997.
  • K. Trimèche, “Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0,\infty )$,” Journal de Mathématiques Pures et Appliquées, vol. 60, no. 1, pp. 51–98, 1981.
  • Z. Xu, Harmonic Analysis on Chébli-Trimèche Hypergroups [Ph.D. thesis], Murdoch University, Perth, Australia, 1994.
  • H. Chebli, “Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur$(0,\infty )$,” Journal de Mathématiques Pures et Appliquées, vol. 58, no. 1, pp. 1–19, 1979.
  • H. Chebli, “Opérateurs de translation généralisée et semi-groupes de convolution,” in Théorie du Potentiel et Analyse Harmonique, vol. 404 of Lecture Notes in Mathematics, pp. 35–59, Springer, Berlin, Germany, 1974.
  • E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, UK, 1937.
  • G. B. Folland, Real Analysis Modern Techniques and Their Appli-cations, Pure and Applied Mathematics (New York), John Wiley & Sons, A Wiley-Interscience Publication, New York, NY, USA, 1984.
  • W. Rudin, Analyse Fonctionnelle, Ediscience International, Paris, France, 1995.
  • H. Brezis, Analyse Fonctionnelle, Masson, Paris, France, 3rd edition, 1983.
  • L. Bouattour and K. Trimèche, “Beurling-Hörmander's theorem for the Chébli-Trimèche transform,” Global Journal of Pure and Applied Mathematics, vol. 1, no. 3, pp. 342–357, 2005.
  • S. Omri and L. T. Rachdi, “Weierstrass transform associated with the Hankel operator,” Bulletin of Mathematical Analysis and Applications, vol. 1, no. 2, pp. 1–16, 2009.
  • T. Matsuura, S. Saitoh, and D. D. Trong, “Approximate and ana-lytical inversion formulas in heat conduction on multidimensional spaces,” Journal of Inverse and Ill-Posed Problems, vol. 13, no. 3–6, pp. 479–493, 2005.
  • S. Saitoh, “Approximate real inversion formulas of the Gaussian convolution,” Applicable Analysis, vol. 83, no. 7, pp. 727–733, 2004.
  • S. Saitoh, “The Weierstrass transform and an isometry in the heat equation,” Applicable Analysis, vol. 16, no. 1, pp. 1–6, 1983.
  • S. Saitoh, Theory of Reproducing Kernels and its Applications, vol. 189 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1988. \endinput