Abstract and Applied Analysis
- Abstr. Appl. Anal.
- Volume 2014, Special Issue (2014), Article ID 238953, 9 pages.
Invertibility and Explicit Inverses of Circulant-Type Matrices with -Fibonacci and -Lucas Numbers
Zhaolin Jiang, Yanpeng Gong, and Yun Gao
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Abstract
Circulant matrices have important applications in solving ordinary differential equations. In this paper, we consider circulant-type matrices with the -Fibonacci and -Lucas numbers. We discuss the invertibility of these circulant matrices and present the explicit determinant and inverse matrix by constructing the transformation matrices, which generalizes the results in Shen et al. (2011).
Article information
Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 238953, 9 pages.
Dates
First available in Project Euclid: 3 October 2014
Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412361157
Digital Object Identifier
doi:10.1155/2014/238953
Mathematical Reviews number (MathSciNet)
MR3214409
Zentralblatt MATH identifier
07021976
Citation
Jiang, Zhaolin; Gong, Yanpeng; Gao, Yun. Invertibility and Explicit Inverses of Circulant-Type Matrices with $k$ -Fibonacci and $k$ -Lucas Numbers. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 238953, 9 pages. doi:10.1155/2014/238953. https://projecteuclid.org/euclid.aaa/1412361157
References
- A. C. Wilde, “Differential equations involving circulant matrices,” The Rocky Mountain Journal of Mathematics, vol. 13, no. 1, pp. 1–13, 1983.Mathematical Reviews (MathSciNet): MR692571
Zentralblatt MATH: 0516.34016
Digital Object Identifier: doi:10.1216/RMJ-1983-13-1-1
Project Euclid: euclid.rmjm/1250128024 - B. Voorhees and A. Nip, “Ordinary differential equations with star structure,” Journal of Dynamical Systems and Geometric Theories, vol. 3, no. 2, pp. 121–152, 2005.Mathematical Reviews (MathSciNet): MR2180759
Zentralblatt MATH: 1096.34005
Digital Object Identifier: doi:10.1080/1726037X.2005.10698495 - C. Zhang, H. Chen, and L. Wang, “Strang-type preconditioners applied to ordinary and neutral differential-algebraic equations,” Numerical Linear Algebra with Applications, vol. 18, no. 5, pp. 843–855, 2011.Mathematical Reviews (MathSciNet): MR2833818
Zentralblatt MATH: 1249.65165
Digital Object Identifier: doi:10.1002/nla.770 - M. P. Joy and V. Tavsanoglu, “Circulant matrices and the stability of a class of CNNs,” International Journal of Circuit Theory and Applications, vol. 24, no. 1, pp. 7–13, 1996.
- J. Delgado, N. Romero, A. Rovella, and F. Vilamajó, “Bounded solutions of quadratic circulant difference equations,” Journal of Difference Equations and Applications, vol. 11, no. 10, pp. 897–907, 2005.Mathematical Reviews (MathSciNet): MR2173720
Zentralblatt MATH: 1097.37011
Digital Object Identifier: doi:10.1080/10236190500138312 - X.-Q. Jin, V.-K. Sin, and L.-l. Song, “Circulant-block preconditioners for solving ordinary differential equations,” Applied Mathematics and Computation, vol. 140, no. 2-3, pp. 409–418, 2003.Mathematical Reviews (MathSciNet): MR1953912
Zentralblatt MATH: 1044.65062
Digital Object Identifier: doi:10.1016/S0096-3003(02)00237-0 - P. J. Davis, Circulant Matrices, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 1979.Mathematical Reviews (MathSciNet): MR543191
- R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations and Trends in Communications and Information Theory, vol. 2, no. 3, pp. 155–239, 2006.
- Z. L. Jiang and Z. X. Zhou, Circulant Matrices, Chengdu Technology University, Chengdu, China, 1999.
- A. Bose, R. S. Hazra, and K. Saha, “Poisson convergence of eigenvalues of circulant type matrices,” Extremes, vol. 14, no. 4, pp. 365–392, 2011.Mathematical Reviews (MathSciNet): MR2853107
Digital Object Identifier: doi:10.1007/s10687-010-0115-5 - A. Bose, R. S. Hazra, and K. Saha, “Spectral norm of circulant-type matrices,” Journal of Theoretical Probability, vol. 24, no. 2, pp. 479–516, 2011.Mathematical Reviews (MathSciNet): MR2795050
Zentralblatt MATH: 1241.60006
Digital Object Identifier: doi:10.1007/s10959-009-0257-z - C. Erbas and M. M. Tanik, “Generating solutions to the $N$-queens problem using $g$-circulants,” Mathematics Magazine, vol. 68, no. 5, pp. 343–356, 1995.
- Y.-K. Wu, R.-Z. Jia, and Q. Li, “$g$-circulant solutions to the $(0,1)$ matrix equation ${A}^{m}={J}_{n}$,” Linear Algebra and Its Applications, vol. 345, pp. 195–224, 2002.Mathematical Reviews (MathSciNet): MR1883273
Zentralblatt MATH: 0998.15015
Digital Object Identifier: doi:10.1016/S0024-3795(01)00491-8 - E. Ngondiep, S. Serra-Capizzano, and D. Sesana, “Spectral features and asymptotic properties for $g$-circulants and $g$-Toeplitz sequences,” SIAM Journal on Matrix Analysis and Applications, vol. 31, no. 4, pp. 1663–1687, 2009/10.
- S. Falcon and A. Plaza, “On $k$-Fibonacci numbers of arithmetic indexes,” Applied Mathematics and Computation, vol. 208, no. 1, pp. 180–185, 2009.Mathematical Reviews (MathSciNet): MR2490783
Digital Object Identifier: doi:10.1016/j.amc.2008.11.031 - Y. Yazlik and N. Taskara, “A note on generalized $k$-Horadam sequence,” Computers & Mathematics with Applications, vol. 63, no. 1, pp. 36–41, 2012.Mathematical Reviews (MathSciNet): MR2863474
- S.-Q. Shen, J.-M. Cen, and Y. Hao, “On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers,” Applied Mathematics and Computation, vol. 217, no. 23, pp. 9790–9797, 2011.Mathematical Reviews (MathSciNet): MR2811251
Zentralblatt MATH: 1222.15010
Digital Object Identifier: doi:10.1016/j.amc.2011.04.072 - A. Cambini, “An explicit form of the inverse of a particular circulant matrix,” Discrete Mathematics, vol. 48, no. 2-3, pp. 323–325, 1984.Mathematical Reviews (MathSciNet): MR737275
Zentralblatt MATH: 0531.15001
Digital Object Identifier: doi:10.1016/0012-365X(84)90192-4 - D. Bozkurt and T.-Y. Tam, “Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers,” Applied Mathematics and Computation, vol. 219, no. 2, pp. 544–551, 2012.Mathematical Reviews (MathSciNet): MR2956985
Zentralblatt MATH: 06284149
Digital Object Identifier: doi:10.1016/j.amc.2012.06.039 - W. T. Stallings and T. L. Boullion, “The pseudoinverse of an $r$-circulant matrix,” Proceedings of the American Mathematical Society, vol. 34, pp. 385–388, 1972. \endinputMathematical Reviews (MathSciNet): MR0296082
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and
g
-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers
Jiang, Zhaolin and Li, Dan, Abstract and Applied Analysis, 2014 - Circulant Type Matrices with the Sum and Product of Fibonacci and Lucas Numbers
Jiang, Zhaolin, Gong, Yanpeng, and Gao, Yun, Abstract and Applied Analysis, 2013 - On Jacobsthal and Jacobsthal-Lucas Circulant Type Matrices
Gong, Yanpeng, Jiang, Zhaolin, and Gao, Yun, Abstract and Applied Analysis, 2014
- The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and
g
-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers
Jiang, Zhaolin and Li, Dan, Abstract and Applied Analysis, 2014 - Circulant Type Matrices with the Sum and Product of Fibonacci and Lucas Numbers
Jiang, Zhaolin, Gong, Yanpeng, and Gao, Yun, Abstract and Applied Analysis, 2013 - On Jacobsthal and Jacobsthal-Lucas Circulant Type Matrices
Gong, Yanpeng, Jiang, Zhaolin, and Gao, Yun, Abstract and Applied Analysis, 2014 - On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers
Jiang, Zhaolin, Yao, Jinjiang, and Lu, Fuliang, Abstract and Applied Analysis, 2014 - Skew Circulant Type Matrices Involving the Sum of Fibonacci and Lucas Numbers
Jiang, Zhaolin and Wei, Yunlan, Abstract and Applied Analysis, 2014 - The Determinants, Inverses, Norm, and Spread of Skew Circulant Type Matrices Involving Any Continuous Lucas Numbers
Yao, Jin-jiang and Jiang, Zhao-lin, Journal of Applied Mathematics, 2013 - Explicit Form of the Inverse Matrices of Tribonacci Circulant Type Matrices
Liu, Li and Jiang, Zhaolin, Abstract and Applied Analysis, 2014 - Determinants, Norms, and the Spread of Circulant Matrices with Tribonacci and Generalized Lucas Numbers
Li, Juan, Jiang, Zhaolin, and Lu, Fuliang, Abstract and Applied Analysis, 2013 - Gaussian Fibonacci Circulant Type Matrices
Jiang, Zhaolin, Xin, Hongxia, and Lu, Fuliang, Abstract and Applied Analysis, 2014 - Norms and Spread of the Fibonacci and Lucas RSFMLR Circulant Matrices
Xu, Wenai and Jiang, Zhaolin, Abstract and Applied Analysis, 2014