Abstract and Applied Analysis
- Abstr. Appl. Anal.
- Volume 2014, Special Issue (2013), Article ID 615840, 5 pages.
Solving a Class of Singularly Perturbed Partial Differential Equation by Using the Perturbation Method and Reproducing Kernel Method
Yu-Lan Wang, Hao Yu, Fu-Gui Tan, and Shanshan Qu
Full-text: Open access
Abstract
We give the analytical solution and the series expansion solution of a class of singularly perturbed partial differential equation (SPPDE) by combining traditional perturbation method (PM) and reproducing kernel method (RKM). The numerical example is studied to demonstrate the accuracy of the present method. Results obtained by the method indicate the method is simple and effective.
Article information
Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 615840, 5 pages.
Dates
First available in Project Euclid: 2 October 2014
Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412279720
Digital Object Identifier
doi:10.1155/2014/615840
Mathematical Reviews number (MathSciNet)
MR3226216
Zentralblatt MATH identifier
07022731
Citation
Wang, Yu-Lan; Yu, Hao; Tan, Fu-Gui; Qu, Shanshan. Solving a Class of Singularly Perturbed Partial Differential Equation by Using the Perturbation Method and Reproducing Kernel Method. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 615840, 5 pages. doi:10.1155/2014/615840. https://projecteuclid.org/euclid.aaa/1412279720
References
- Y. Han, X. Zhang, L. Liu, and Y. Wu, “Multiple positive solutions of singular nonlinear Sturm-Liouville problems with Carathéodory perturbed term,” Journal of Applied Mathematics, vol. 2012, Article ID 160891, 23 pages, 2012.
- F. Z. Geng and S. P. Qian, “Solving singularly perturbed multipantograph delay equations based on the reproducing kernel method,” Abstract and Applied Analysis, vol. 2014, Article ID 794716, 6 pages, 2014.Mathematical Reviews (MathSciNet): MR3176771
- M. Stojanović, “Splines difference methods for a singular perturbation problem,” Applied Numerical Mathematics, vol. 21, no. 3, pp. 321–333, 1996.Mathematical Reviews (MathSciNet): MR1416862
Zentralblatt MATH: 0859.65080
Digital Object Identifier: doi:10.1016/0168-9274(96)00011-6 - S. Bushnaq, B. Maayah, S. Momani, and A. Alsaedi, “A Reproducing Kernel Hilbert Space Method for Solving Systems of Fractional Integrodifferential Equations,” Abstract and Applied Analysis, vol. 2014, Article ID 103016, 6 pages, 2014.
- F. O. Ilicasu and D. H. Schultz, “High-order finite-difference techniques for linear singular perturbation boundary value problems,” Computers & Mathematics with Applications, vol. 47, no. 2-3, pp. 391–417, 2004.
- I. Boglaev, “Domain decomposition in boundary layers for singularly perturbed problems,” Applied Numerical Mathematics, vol. 34, no. 2-3, pp. 145–166, 2000.Mathematical Reviews (MathSciNet): MR1770420
Zentralblatt MATH: 0952.65071
Digital Object Identifier: doi:10.1016/S0168-9274(99)00124-5 - C. Phang, Y. Wu, and B. Wiwatanapataphee, “Computation ofthe domain of attraction for suboptimal immunity epidemicmodels using the maximal Lyapunov function method,” Abstract and Applied Analysis, vol. 2013, Article ID 508794, 7 pages, 2013.Mathematical Reviews (MathSciNet): MR3035188
Zentralblatt MATH: 06161341
Digital Object Identifier: doi:10.1155/2013/508794 - M. Inc, A. Akgül, and A. Kiliçman, “A novel method for solvingKdV equation based on reproducing kernel Hilbert space method,” Abstract and Applied Analysis, vol. 2013, Article ID 578942, 11 pages, 2013.
- M. Cui and F. Geng, “A computational method for solving one-dimensional variable-coefficient Burgers equation,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1389–1401, 2007.Mathematical Reviews (MathSciNet): MR2335637
Zentralblatt MATH: 1118.35348
Digital Object Identifier: doi:10.1016/j.amc.2006.11.005 - Y. Wang, T. Chaolu, and Z. Chen, “Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems,” International Journal of Computer Mathematics, vol. 87, no. 1–3, pp. 367–380, 2010.Mathematical Reviews (MathSciNet): MR2598747
Zentralblatt MATH: 1185.65134
Digital Object Identifier: doi:10.1080/00207160802047640 - I. Boglaev, “Monotone iterative algorithms for a nonlinear singularly perturbed parabolic problem,” Journal of Computational and Applied Mathematics, vol. 172, no. 2, pp. 313–335, 2004.Mathematical Reviews (MathSciNet): MR2095323
Zentralblatt MATH: 1070.65091
Digital Object Identifier: doi:10.1016/j.cam.2004.02.010 - X. Y. Li, B. Y. Wu, and R. T. Wang, “Reproducing kernel method for fractional riccati differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 970967, 6 pages, 2014.Mathematical Reviews (MathSciNet): MR3206834
- H. Du and M. Cui, “Approximate solution of the Fredholm integral equation of the first kind in a reproducing kernel Hilbert space,” Applied Mathematics Letters, vol. 21, no. 6, pp. 617–623, 2008.Mathematical Reviews (MathSciNet): MR2412388
Zentralblatt MATH: 1145.65113
Digital Object Identifier: doi:10.1016/j.aml.2007.07.014 - Y. Wang, X. Cao, and X. Li, “A new method for solving singular fourth-order boundary value problems with mixed boundary conditions,” Applied Mathematics and Computation, vol. 217, no. 18, pp. 7385–7390, 2011.Mathematical Reviews (MathSciNet): MR2784581
Zentralblatt MATH: 1221.65177
Digital Object Identifier: doi:10.1016/j.amc.2011.02.002 - M. Inc, A. Akgül, and A. Kiliçman, “Explicit solution of telegraph equation based on reproducing kernel method,” Journalof Function Spaces and Applications, vol. 2012, Article ID 984682, 23 pages, 2012.Mathematical Reviews (MathSciNet): MR3006134
Zentralblatt MATH: 1259.35062
Digital Object Identifier: doi:10.1155/2012/984682 - G. Akram and H. U. Rehman, “Numerical solution of eighth order boundary value problems in reproducing kernel space,” Numerical Algorithms, vol. 62, no. 3, pp. 527–540, 2013.Mathematical Reviews (MathSciNet): MR3022780
Zentralblatt MATH: 1281.65101
Digital Object Identifier: doi:10.1007/s11075-012-9608-4 - H. Yao and Y. Lin, “Solving singular boundary-value problems of higher even-order,” Journal of Computational and Applied Mathematics, vol. 223, no. 2, pp. 703–713, 2009.Mathematical Reviews (MathSciNet): MR2478873
Zentralblatt MATH: 1181.65108
Digital Object Identifier: doi:10.1016/j.cam.2008.02.010 - Y. Lin and J. Lin, “A numerical algorithm for solving a class of linear nonlocal boundary value problems,” Applied Mathematics Letters, vol. 23, no. 9, pp. 997–1002, 2010.Mathematical Reviews (MathSciNet): MR2659127
Zentralblatt MATH: 1201.65130
Digital Object Identifier: doi:10.1016/j.aml.2010.04.025 - B. Y. Wu and X. Y. Li, “A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method,” Applied Mathematics Letters, vol. 24, no. 2, pp. 156–159, 2011.Mathematical Reviews (MathSciNet): MR2735132
Zentralblatt MATH: 1215.34014
Digital Object Identifier: doi:10.1016/j.aml.2010.08.036 - F. Z. Geng and X. M. Li, “A new method for Riccati differential equations based on reproducing kernel and quasilinearization methods,” Abstract and Applied Analysis, vol. 2012, Article ID 603748, 8 pages, 2012.Mathematical Reviews (MathSciNet): MR2898051
Zentralblatt MATH: 1237.65090
Digital Object Identifier: doi:10.1155/2012/603748 - R. Mokhtari, F. T. Isfahani, and M. Mohammadi, “Reproducing kernel method for solving nonlinear differential-difference equations,” Abstract and Applied Analysis, vol. 2012, Article ID 514103, 10 pages, 2012.Mathematical Reviews (MathSciNet): MR2955014
Zentralblatt MATH: 1251.34080
Digital Object Identifier: doi:10.1155/2012/514103 - M. Inc and A. Akgül, “The reproducing kernel Hilbert space method for solving Troeschs problem,” Journal of the Association of Arab Universities for Basic and Applied Sciences, no. 1, pp. 19–27, 2013.
- M. Inc and A. Akgül, “Numerical solution of seventh-order boundary value problems by a novel m ethod,” Abstract and Applied Analysis, vol. 2014, Article ID 745287, 9 pages, 2014. \endinput
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Solving Singularly Perturbed Multipantograph Delay Equations Based on the Reproducing Kernel Method
Geng, F. Z. and Qian, S. P., Abstract and Applied Analysis, 2014 - Numerical Solutions of the Second-Order One-Dimensional Telegraph Equation Based on Reproducing Kernel Hilbert Space Method
Inc, Mustafa, Akgül, Ali, and Kılıçman, Adem, Abstract and Applied Analysis, 2013 - The Solution of a Class of Singularly Perturbed Two-Point Boundary Value Problems by the Iterative Reproducing Kernel Method
Li, Zhiyuan, Wang, YuLan, Tan, Fugui, Wan, Xiaohui, and Nie, Tingfang, Abstract and Applied Analysis, 2012
- Solving Singularly Perturbed Multipantograph Delay Equations Based on the Reproducing Kernel Method
Geng, F. Z. and Qian, S. P., Abstract and Applied Analysis, 2014 - Numerical Solutions of the Second-Order One-Dimensional Telegraph Equation Based on Reproducing Kernel Hilbert Space Method
Inc, Mustafa, Akgül, Ali, and Kılıçman, Adem, Abstract and Applied Analysis, 2013 - The Solution of a Class of Singularly Perturbed Two-Point Boundary Value Problems by the Iterative Reproducing Kernel Method
Li, Zhiyuan, Wang, YuLan, Tan, Fugui, Wan, Xiaohui, and Nie, Tingfang, Abstract and Applied Analysis, 2012 - The Solution of a Class of Third-Order Boundary Value Problems by the Reproducing Kernel Method
Li, Zhiyuan, Wang, Yulan, and Tan, Fugui, Abstract and Applied Analysis, 2012 - A Novel Method for Solving KdV Equation Based on Reproducing Kernel Hilbert Space Method
Inc, Mustafa, Akgül, Ali, and Kiliçman, Adem, Abstract and Applied Analysis, 2012 - The Combined RKM and ADM for Solving Nonlinear Weakly Singular Volterra Integrodifferential Equations
Lv, Xueqin and Shi, Sixing, Abstract and Applied Analysis, 2012 - An Asymptotic-Numerical Hybrid Method for Solving Singularly Perturbed Linear Delay Differential Equations
Cengizci, Süleyman, International Journal of Differential Equations, 2017 - Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift
File, Gemechis and Reddy, Y. N., International Journal of Differential Equations, 2012 - Numerical Solution of Singularly Perturbed Delay Differential Equations with Layer Behavior
Ghomanjani, F., Kılıçman, A., and Akhavan Ghassabzade, F., Abstract and Applied Analysis, 2014 - Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations
Abu Arqub, Omar, Al-Smadi, Mohammed, and Momani, Shaher, Abstract and Applied Analysis, 2012