Abstract and Applied Analysis

Generalized Composition Operators from μ Spaces to Q K , ω ( p , q ) Spaces

Haiying Li and Tianshui Ma

Full-text: Open access

Abstract

Let 0 < p < , let - 2 < q < , and let φ be an analytic self-map of 𝔻 and g H ( 𝔻 ) . The boundedness and compactness of generalized composition operators ( C φ g f ) ( z ) = 0 z f ' ( φ ( ξ ) ) g ( ξ ) d ξ ,  z 𝔻 ,  f H ( 𝔻 ) , from μ ( μ , 0 ) spaces to Q K , ω ( p , q ) spaces are investigated.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2014), Article ID 897389, 6 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412278797

Digital Object Identifier
doi:10.1155/2014/897389

Mathematical Reviews number (MathSciNet)
MR3193557

Citation

Li, Haiying; Ma, Tianshui. Generalized Composition Operators from ${\scr B}_{\mu }$ Spaces to ${Q}_{K,\omega }(p,q)$ Spaces. Abstr. Appl. Anal. 2014, Special Issue (2014), Article ID 897389, 6 pages. doi:10.1155/2014/897389. https://projecteuclid.org/euclid.aaa/1412278797


Export citation

References

  • K. Madigan and A. Matheson, “Compact composition operators on the Bloch space,” Transactions of the American Mathematical Society, vol. 347, no. 7, pp. 2679–2687, 1995.
  • R. A. Rashwan, A. El-Sayed Ahmed, and A. Kamal, “Integral characterizations of weighted Bloch spaces and ${Q}_{K,\omega }(p,q)$ spaces,” Mathematica, vol. 51, no. 74, pp. 63–76, 2009.
  • F. Zhang and Y. Liu, “Generalized composition operators from Bloch type spaces to ${Q}_{K}$ type spaces,” Journal of Function Spaces and Applications, vol. 8, no. 1, pp. 55–66, 2010.
  • C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, Fla, USA, 1995.
  • P. Galanopoulos, “On ${B}_{\log }$ to ${Q}_{\log }^{p}$ pullbacks,” Journal of Mathematical Analysis and Applications, vol. 337, no. 1, pp. 712–725, 2008.
  • M. Kotilainen, “On composition operators in ${Q}_{K}$ type spaces,” Journal of Function Spaces and Applications, vol. 5, no. 2, pp. 103–122, 2007.
  • H. Li and P. Liu, “Composition operators between generally weighted Bloch space and ${Q}_{\text{l}\text{o}\text{g}}^{q}$ space,” Banach Journal of Mathematical Analysis, vol. 3, no. 1, pp. 99–110, 2009.
  • B. D. MacCluer and J. H. Shapiro, “Angular derivatives and compact composition operators on the Hardy and Bergman spaces,” Canadian Journal of Mathematics, vol. 38, no. 4, pp. 878–906, 1986.
  • C. Yang, W. Xu, and M. Kotilainen, “Composition operators from Bloch type spaces into ${Q}_{K}$ type spaces,” Journal of Mathematical Analysis and Applications, vol. 379, no. 1, pp. 26–34, 2011.
  • R. Yoneda, “The composition operators on weighted Bloch space,” Archiv der Mathematik, vol. 78, no. 4, pp. 310–317, 2002.
  • J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics, Springer, New York, NY, USA, 1993.
  • X. Zhu, “Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces,” Journal of the Korean Mathematical Society, vol. 46, no. 6, pp. 1219–1232, 2009.
  • S. Li and S. Stević, “Generalized composition operators on Zygmund spaces and Bloch type spaces,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1282–1295, 2008.
  • A. E.-S. Ahmed and A. Kamal, “Generalized composition operators on ${Q}_{K,\omega }(p,q)$ spaces,” Mathematical Sciences, vol. 6, article 14, 9 pages, 2012.
  • S. Rezaei and H. Mahyar, “Generalized composition operators from logarithmic Bloch type spaces to ${Q}_{K}$ type spaces,” Mathematics Scientific Journal, vol. 8, no. 1, pp. 45–57, 2012.
  • Sh. Rezaei and H. Mahyar, “Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to ${Q}_{K}$ type spaces,” Iranian Mathematical Society. Bulletin, vol. 39, no. 1, pp. 151–164, 2013.
  • W. Yang and X. Meng, “Generalized composition operators from $F(p,q,s)$ spaces to Bloch-type spaces,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2513–2519, 2010.
  • S. Stević, “Generalized composition operators from logarithmic Bloch spaces to mixed-norm spaces,” Utilitas Mathematica, vol. 77, pp. 167–172, 2008.
  • L. Zhang and Z.-H. Zhou, “Generalized composition operator from Bloch-type spaces to mixed-norm space on the unit ball,” Journal of Mathematical Inequalities, vol. 6, no. 4, pp. 523–532, 2012.
  • X. Zhu, “Generalized composition operators and Volterra composition operators on Bloch spaces in the unit ball,” Complex Variables and Elliptic Equations, vol. 54, no. 2, pp. 95–102, 2009. \endinput