Abstract and Applied Analysis

The Spectral Homotopy Analysis Method Extended to Systems of Partial Differential Equations

S. S. Motsa, F. G. Awad, Z. G. Makukula, and P. Sibanda

Full-text: Open access

Abstract

The spectral homotopy analysis method is extended to solutions of systems of nonlinear partial differential equations. The SHAM has previously been successfully used to find solutions of nonlinear ordinary differential equations. We solve the nonlinear system of partial differential equations that model the unsteady nonlinear convective flow caused by an impulsively stretching sheet. The numerical results generated using the spectral homotopy analysis method were compared with those found using the spectral quasilinearisation method (SQLM) and the two results were in good agreement.

Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 241594, 11 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412278607

Digital Object Identifier
doi:10.1155/2014/241594

Mathematical Reviews number (MathSciNet)
MR3206775

Zentralblatt MATH identifier
07021981

Citation

Motsa, S. S.; Awad, F. G.; Makukula, Z. G.; Sibanda, P. The Spectral Homotopy Analysis Method Extended to Systems of Partial Differential Equations. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 241594, 11 pages. doi:10.1155/2014/241594. https://projecteuclid.org/euclid.aaa/1412278607


Export citation

References

  • S. S. Motsa, P. Sibanda, and S. Shateyi, “A new spectral-homotopy analysis method for solving a nonlinear second order BVP,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2293–2302, 2010.
  • S. S. Motsa, P. Sibanda, F. G. Awad, and S. Shateyi, “A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem,” Computers & Fluids, vol. 39, no. 7, pp. 1219–1225, 2010.
  • S. S. Motsa, “On the pratical use of the spectral homotopy analysis method and local linearisation method for unsteady boundary-layer flows caused by an impulsively stretching plate,” Numerical Algorithms, 2013.
  • R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Modern Analytic and Computional Methods in Science and Mathematics, Vol. 3, Elsevier, 1965.
  • M. Kumari, A. Slaouti, H. S. Takhar, S. Nakamura, and G. Nath, “Unsteady free convection flow over a continuous moving vertical surface,” Acta Mechanica, vol. 116, pp. 75–82, 1996.
  • A. Ishak, R. Nazar, and I. Pop, “Unsteady mixed convection boundary layer flow due to a stretching vertical surface,” The Arabian Journal for Science and Engineering B, vol. 31, no. 2, pp. 165–182, 2006.
  • I. Pop and T.-Y. Na, “Unsteady flow past a stretching sheet,” Mechanics Research Communications, vol. 23, no. 4, pp. 413–422, 1996.
  • C. Y. Wang, Q. Du, M. Miklavčič, and C. C. Chang, “Impulsive stretching of a surface in a viscous fluid,” SIAM Journal on Applied Mathematics, vol. 57, no. 1, pp. 1–14, 1997.
  • A. Mahdy, “Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet,” Nuclear Engineering and Design, vol. 249, pp. 248–255, 2012.
  • N. Bachok, A. Ishak, and I. Pop, “Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, no. 7-8, pp. 2102–2109, 2012.
  • R. Sharma, A. Ishak, and I. Pop, “Partial slip flow and heat transfer over a stretching sheet in a nanofluid,” Mathematical Problems in Engineering, vol. 2013, Article ID 724547, 7 pages, 2013.
  • R. B. Bird, W. R. Stewar, and E. N. Lightfoot, Transport Phenomena, Toppan, Tokyo, Japan, 1960.
  • V. L. Streeter, Handbook of Fluid Dynamics, vol. 6, McGraw-Hill, New York, NY, USA, 1961.
  • H. Barrow and T. L. S. Rao, “Effect of variation in the volumetric expansion coefficient on free convection heat transfer,” British Chemical Engineering, vol. 16, no. 8, pp. 704–709, 1971.
  • A. Brown, “Effect on laminar free convection heat transfer of the temperature dependence of the coefficient of volumetric expansion,” Journal of Heat Transfer, vol. 97, no. 1, pp. 133–135, 1975.
  • M. K. Partha, “Nonlinear convection in a non-Darcy porous medium,” Applied Mathematics and Mechanics. English Edition, vol. 31, no. 5, pp. 565–574, 2010.
  • K. V. Prasad, K. Vajravelu, and R. A. Van Gorder, “Non-Darcian flow and heat transfer along a permeable vertical surface with nonlinear density temperature variation,” Acta Mechanica, vol. 220, no. 1–4, pp. 139–154, 2011.
  • C. Karcher and U. Müller, “Bénard convection in a binary mixture with a nonlinear density-temperature relation,” Physical Review E, vol. 49, no. 5, pp. 4031–4043, 1994.
  • A. A. Elbeleze, A. K\il\içman, and B. M. Taib, “Homotopy perturbation method for fractional Black-Scholes European option pricing equations using Sumudu transform,” Mathematical Problems in Engineering, vol. 2013, Article ID 524852, 7 pages, 2013.
  • M. Javidi and M. A. Raji, “Combination of Laplace transform and homotopy perturbation method to solve the parabolic partial differential equations,” Communications in Fractional Calculus, vol. 3, pp. 10–19, 2012.
  • L. N. Trefethen, Spectral methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), 2000. \endinput