Abstract and Applied Analysis

On the Ideal Convergence of Double Sequences in Locally Solid Riesz Spaces

A. Alotaibi, B. Hazarika, and S. A. Mohiuddine

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The aim of this paper is to define the notions of ideal convergence, I -bounded for double sequences in setting of locally solid Riesz spaces and study some results related to these notions. We also define the notion of I * -convergence for double sequences in locally solid Riesz spaces and establish its relationship with ideal convergence.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 396254, 6 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412273295

Digital Object Identifier
doi:10.1155/2014/396254

Mathematical Reviews number (MathSciNet)
MR3193507

Zentralblatt MATH identifier
1314.40004

Citation

Alotaibi, A.; Hazarika, B.; Mohiuddine, S. A. On the Ideal Convergence of Double Sequences in Locally Solid Riesz Spaces. Abstr. Appl. Anal. 2014 (2014), Article ID 396254, 6 pages. doi:10.1155/2014/396254. https://projecteuclid.org/euclid.aaa/1412273295


Export citation

References

  • H. Fast, “Sur la convergence statistique,” Colloquium Mathematicum, vol. 2, pp. 241–244, 1951.
  • H. Steinhaus, “Sur la convergence ordinate et la convergence asymptotique,” Colloquium Mathematicum, vol. 2, pp. 73–84, 1951.
  • R. C. Buck, “Generalized asymptotic density,” American Journal of Mathematics, vol. 75, pp. 335–346, 1953.
  • T. Šalát, “On statistical convergence of real numbers,” Mathematica Slovaca, vol. 30, pp. 139–150, 1980.
  • I. J. Schoenberg, “The integrability of certain functions and related summability methods,” The American Mathematical Monthly, vol. 66, pp. 361–375, 1959.
  • J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, no. 4, pp. 301–313, 1985.
  • H. Çakalli, “Lacunary statistical convergence in topological groups,” Indian Journal of Pure and Applied Mathematics, vol. 26, no. 2, pp. 113–119, 1995.
  • H. Çakalli, “On statistical convergence in topological groups,” Pure and Applied Mathematika Sciences, vol. 43, no. 1-2, pp. 27–31, 1996.
  • H. Çakalli and M. K. Khan, “Summability in topological spaces,” Applied Mathematics Letters, vol. 24, no. 3, pp. 348–352, 2011.
  • G. Di Maio and L. D. R. Kočinac, “Statistical convergence in topology,” Topology and Its Applications, vol. 156, no. 1, pp. 28–45, 2008.
  • A. Caserta, G. Di Maio, and L. D. R. Kočinac, “Statistical convergence in function spaces,” Abstract and Applied Analysis, vol. 2011, Article ID 420419, 11 pages, 2011.
  • B. Hazarika, “On ideal convergence in topological groups,” Scientia Magna, vol. 7, no. 4, pp. 80–86, 2011.
  • B. Hazarika, “On generalized difference ideal convergence in random 2-normed spaces,” Filomat, vol. 26, no. 6, pp. 1273–1282, 2012.
  • B. Hazarika, “Lacunary generalized difference statistical convergence in random 2-normed spaces,” Proyecciones. Journal of Mathematics, vol. 31, no. 4, pp. 373–390, 2012.
  • I. J. Maddox, “Statistical convergence in a locally convex space,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, no. 1, pp. 141–145, 1988.
  • S. A. Mohiuddine and M. Aiyub, “Lacunary statistical convergence in random 2-normed spaces,” Applied Mathematics & Information Sciences, vol. 6, no. 3, pp. 581–585, 2012.
  • S. A. Mohiuddine, H. Şevli, and M. Cancan, “Statistical convergence in fuzzy 2-normed space,” Journal of Computational Analysis and Applications, vol. 12, no. 4, pp. 787–798, 2010.
  • S. A. Mohiuddine, A. Alotaibi, and M. Mursaleen, “A new variant of statistical convergence,” Journal of Inequalities and Applications, vol. 2013, article 309, 8 pages, 2013.
  • E. Savaş and S. A. Mohiuddine, “$\overline{\lambda }$-statistically convergent double sequences in probabilistic normed spaces,” Mathematica Slovaca, vol. 62, no. 1, pp. 99–108, 2012.
  • C. Belen and S. A. Mohiuddine, “Generalized weighted statistical convergence and application,” Applied Mathematics and Computation, vol. 219, no. 18, pp. 9821–9826, 2013.
  • N. L. Braha, H. M. Srivastava, and S. A. Mohiuddine, “A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean,” Applied Mathematics and Computation, vol. 228, pp. 162–169, 2014.
  • Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences,” Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 223–231, 2003.
  • S. A. Mohiuddine, H. Şevli, and M. Cancan, “Statistical convergence of double sequences in fuzzy normed spaces,” Filomat, vol. 26, no. 4, pp. 673–681, 2012.
  • M. Mursaleen and S. A. Mohiuddine, “Statistical convergence of double sequences in intuitionistic fuzzy normed spaces,” Chaos, Solitons & Fractals, vol. 41, no. 5, pp. 2414–2421, 2009.
  • S. A. Mohiuddine, A. Alotaibi, and M. Mursaleen, “Statistical convergence of double sequences in locally solid Riesz spaces,” Abstract and Applied Analysis, vol. 2012, Article ID 719729, 9 pages, 2012.
  • H. Albayrak and S. Pehlivan, “Statistical convergence and statistical continuity on locally solid Riesz spaces,” Topology and Its Applications, vol. 159, no. 7, pp. 1887–1893, 2012.
  • S. A. Mohiuddine, B. Hazarika, and A. Alotaibi, “Double lacunary density and some inclusion results in locally solid Riesz spaces,” Abstract and Applied Analysis, vol. 2013, Article ID 507962, 8 pages, 2013.
  • S. A. Mohiuddine and A. Alotaibi, “Statistical summability of double sequences through de la Vallée-Poussin mean in probabilistic normed spaces,” Abstract and Applied Analysis, vol. 2013, Article ID 215612, 5 pages, 2013.
  • S. A. Mohiuddine and M. A. Alghamdi, “Statistical summability through a lacunary sequence in locally solid Riesz spaces,” Journal of Inequalities and Applications, vol. 2012, article 225, 9 pages, 2012.
  • C. D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with Applications to Economics, vol. 105 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 2nd edition, 2003.
  • P. Kostyrko, T. Šalát, and W. Wilczyński, “$\mathcal{I}$-convergence,” Real Analysis Exchange, vol. 26, no. 2, pp. 669–685, 2000-2001.
  • V. Kumar, “On $I$ and ${I}^{\ast\,\!}$-convergence of double sequences,” Mathematical Communications, vol. 12, no. 2, pp. 171–181, 2007.
  • P. Das, P. Kostyrko, W. Wilczyński, and P. Malik, “$I$ and ${I}^{\ast\,\!}$-convergence of double sequences,” Mathematica Slovaca, vol. 58, no. 5, pp. 605–620, 2008.
  • M. Mursaleen and S. A. Mohiuddine, “On ideal convergence in probabilistic normed spaces,” Mathematica Slovaca, vol. 62, no. 1, pp. 49–62, 2012.
  • M. Mursaleen and S. A. Mohiuddine, “On ideal convergence of double sequences in probabilistic normed spaces,” Mathematical Reports, vol. 12(62), no. 4, pp. 359–371, 2010.
  • A. Şahiner, M. Gürdal, S. Saltan, and H. Gunawan, “Ideal convergence in 2-normed spaces,” Taiwanese Journal of Mathematics, vol. 11, no. 5, pp. 1477–1484, 2007.
  • M. Gürdal and I. Aç\ik, “On $I$-Cauchy sequences in 2-normed spaces,” Mathematical Inequalities & Applications, vol. 11, no. 2, pp. 349–354, 2008.
  • M. Mursaleen and A. Alotaibi, “On $I$-convergence in random 2-normed spaces,” Mathematica Slovaca, vol. 61, no. 6, pp. 933–940, 2011.
  • S. A. Mohiuddine, A. Alotaibi, and S. M. Alsulami, “Ideal convergence of double sequences in random 2-normed spaces,” Advances in Difference Equations, vol. 2012, article 149, 8 pages, 2012.
  • H. Çakalli and B. Hazarika, “Ideal quasi-Cauchy sequences,” Journal of Inequalities and Applications, vol. 2012, article 234, 11 pages, 2012.
  • E. Dündar, Ö. Talo, and F. Başar, “Regularly (${\mathcal{I}}_{2}$, $\mathcal{I}$)-convergence and regularly (${\mathcal{I}}_{2}$, $\mathcal{I}$)-Cauchy double sequences of fuzzy numbers,” International Journal of Analysis, vol. 2013, Article ID 749684, 7 pages, 2013.
  • B. Hazarika and S. A. Mohiuddine, “Ideal convergence of random variables,” Journal of Function Spaces and Applications, vol. 2013, Article ID 148249, 7 pages, 2013.
  • B. K. Lahiri and P. Das, “$I$ and ${I}^{\ast\,\!}$-convergence in topological spaces,” Mathematica Bohemica, vol. 130, no. 2, pp. 153–160, 2005.
  • H. I. Miller, “A measure theoretical subsequence characterization of statistical convergence,” Transactions of the American Mathematical Society, vol. 347, no. 5, pp. 1811–1819, 1995.
  • M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, “On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 603–611, 2010.
  • F. Nuray and W. H. Ruckle, “Generalized statistical convergence and convergence free spaces,” Journal of Mathematical Analysis and Applications, vol. 245, no. 2, pp. 513–527, 2000.
  • T. Šalát, B. C. Tripathy, and M. Ziman, “On some properties of $I$-convergence,” Tatra Mountains Mathematical Publications, vol. 28, pp. 279–286, 2004.
  • T. Šalát, B. C. Tripathy, and M. Ziman, “On $I$-convergence field,” Italian Journal of Pure and Applied Mathematics, no. 17, pp. 45–54, 2005.
  • B. C. Tripathy and B. Hazarika, “$I$-monotonic and $I$-convergent sequences,” Kyungpook Mathematical Journal, vol. 51, no. 2, pp. 233–239, 2011.
  • B. C. Tripathy and B. Hazarika, “$I$-convergent sequence spaces associated with multiplier sequences,” Mathematical Inequalities & Applications, vol. 11, no. 3, pp. 543–548, 2008.
  • B. Tripathy and B. C. Tripathy, “On $I$-convergent double sequences,” Soochow Journal of Mathematics, vol. 31, no. 4, pp. 549–560, 2005.
  • U. Yamanc\i and M. Gürdal, “${\mathcal{I}}^{\mathcal{K}}$-convergence in the topology induced by random 2-normed spaces,” International Journal of Analysis, vol. 2013, Article ID 451762, 7 pages, 2013.
  • A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Germany, 1997.
  • G. T. Roberts, “Topologies in vector lattices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 533–546, 1952.
  • L. V. Kantorovich, “Lineare halbgeordnete Raume,” Recreational Mathematics, vol. 2, pp. 121–168, 1937.
  • W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam, The Netherlands, 1971.
  • F. Riesz, “Sur la décomposition des opérations fonctionelles linéaires,” in Atti Del Congr. Internaz. Dei Mat., 3, Bologna, 1928, pp. 143–148, Zanichelli, 1930.
  • A. Pringsheim, “Zur Theorie der zweifach unendlichen Zahlenfolgen,” Mathematische Annalen, vol. 53, no. 3, pp. 289–321, 1900. \endinput