Abstract and Applied Analysis

Some Paranormed Double Difference Sequence Spaces for Orlicz Functions and Bounded-Regular Matrices

S. A. Mohiuddine, Kuldip Raj, and Abdullah Alotaibi

Full-text: Open access

Abstract

The aim of this paper is to introduce some new double difference sequence spaces with the help of the Musielak-Orlicz function = ( F j k ) and four-dimensional bounded-regular (shortly, RH-regular) matrices A = ( a n m j k ) . We also make an effort to study some topological properties and inclusion relations between these double difference sequence spaces.

Article information

Source
Abstr. Appl. Anal., Volume 2014 (2014), Article ID 419064, 10 pages.

Dates
First available in Project Euclid: 2 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1412273232

Digital Object Identifier
doi:10.1155/2014/419064

Mathematical Reviews number (MathSciNet)
MR3182279

Zentralblatt MATH identifier
07022354

Citation

Mohiuddine, S. A.; Raj, Kuldip; Alotaibi, Abdullah. Some Paranormed Double Difference Sequence Spaces for Orlicz Functions and Bounded-Regular Matrices. Abstr. Appl. Anal. 2014 (2014), Article ID 419064, 10 pages. doi:10.1155/2014/419064. https://projecteuclid.org/euclid.aaa/1412273232


Export citation

References

  • G. H. Hardy, “On the convergence of certain multiple series,” Proceedings of the Cambridge Philosophical Society, vol. 19, pp. 86–95, 1917.
  • T. J. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan and co. Ltd, New York, NY, USA, 1965.
  • F. Móricz, “Extensions of the spaces $c$ and ${c}_{0}$ from single to double sequences,” Acta Mathematica Hungarica, vol. 57, no. 1-2, pp. 129–136, 1991.
  • F. Móricz and B. E. Rhoades, “Almost convergence of double sequences and strong regularity of summability matrices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, no. 2, pp. 283–294, 1988.
  • M. Başar\ir and O. Sonalcan, “On some double sequence spaces,” Indian Academy of Mathematics, vol. 21, no. 2, pp. 193–200, 1999.
  • M. Mursaleen and S. A. Mohiuddine, “Regularly $\sigma $-conservative and $\sigma $-coercive four dimensional matrices,” Computers & Mathematics with Applications, vol. 56, no. 6, pp. 1580–1586, 2008.
  • M. Mursaleen and S. A. Mohiuddine, “On $\sigma $-conservative and boundedly $\sigma $-conservative four-dimensional matrices,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 880–885, 2010.
  • Mursaleen and S. A. Mohiuddine, “Double $\sigma $-multiplicative matrices,” Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 991–996, 2007.
  • M. Mursaleen, “Almost strongly regular matrices and a core theorem for double sequences,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 523–531, 2004.
  • M. Mursaleen and O. H. H. Edely, “Almost convergence and a core theorem for double sequences,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 532–540, 2004.
  • S. A. Mohiuddine and A. Alotaibi, “Almost conservative four-dimensional matrices through de la Vallée-Poussin mean,” Abstract and Applied Analysis, vol. 2014, Article ID 412974, 6 pages, 2014.
  • B. Altay and F. Başar, “Some new spaces of double sequences,” Journal of Mathematical Analysis and Applications, vol. 309, no. 1, pp. 70–90, 2005.
  • F. Başar and Y. Sever, “The space ${L}_{q}$ of double sequences,” Mathematical Journal of Okayama University, vol. 51, pp. 149–157, 2009.
  • M. Mursaleen and S. A. Mohiuddine, “Some matrix transformations of convex and paranormed sequence spaces into the spaces of invariant means,” Journal of Function Spaces and Applications, vol. 2012, Article ID 612671, 10 pages, 2012.
  • S. A. Mohiuddine and A. Alotaibi, “Some spaces of double sequences obtained through invariant mean and related concepts,” Abstract and Applied Analysis, vol. 2013, Article ID 507950, 11 pages, 2013.
  • K. Demirci, “Strong $A$-summability and $A$-statistical convergence,” Indian Journal of Pure and Applied Mathematics, vol. 27, no. 6, pp. 589–593, 1996.
  • M. Mursaleen and S. A. Mohiuddine, “Some new double sequence spaces of invariant means,” Glasnik Matematički, vol. 45, no. 1, pp. 139–153, 2010.
  • S. D. Parashar and B. Choudhary, “Sequence spaces defined by Orlicz functions,” Indian Journal of Pure and Applied Mathematics, vol. 25, no. 4, pp. 419–428, 1994.
  • H. K\izmaz, “On certain sequence spaces,” Canadian Mathematical Bulletin, vol. 24, no. 2, pp. 169–176, 1981.
  • M. Et and R. Çolak, “On some generalized difference sequence spaces,” Soochow Journal of Mathematics, vol. 21, no. 4, pp. 377–386, 1995.
  • M. Et, “Spaces of Cesàro difference sequences of order $r$ defined by a modulus function in a locally convex space,” Taiwanese Journal of Mathematics, vol. 10, no. 4, pp. 865–879, 2006.
  • M. Et, “Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences,” Applied Mathematics and Computation, vol. 219, no. 17, pp. 9372–9376, 2013.
  • K. Raj, A. K. Sharma, and S. K. Sharma, “A sequence space defined by Musielak-Orlicz function,” International Journal of Pure and Applied Mathematics, vol. 67, no. 4, pp. 475–484, 2011.
  • K. Raj, S. Jamwal, and S. K. Sharma, “New classes of generalized sequence spaces defined by an Orlicz function,” Journal of Computational Analysis and Applications, vol. 15, no. 4, pp. 730–737, 2013.
  • K. Raj and S. K. Sharma, “Some generalized difference double sequence spaces defined by a sequence of Orlicz-functions,” Cubo, vol. 14, no. 3, pp. 167–190, 2012.
  • B. C. Tripathy, “Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex space,” Soochow Journal of Mathematics, vol. 30, no. 4, pp. 431–446, 2004.
  • M. Et, Y. Altin, B. Choudhary, and B. C. Tripathy, “On some classes of sequences defined by sequences of Orlicz functions,” Mathematical Inequalities & Applications, vol. 9, no. 2, pp. 335–342, 2006.
  • J. Lindenstrauss and L. Tzafriri, “On Orlicz sequence spaces,” Israel Journal of Mathematics, vol. 10, pp. 379–390, 1971.
  • L. Maligranda, Orlicz Spaces and Interpolation, vol. 5 of Seminars in Mathematics, Polish Academy of Science, 1989.
  • J. Musielak, Orlicz Spaces and Modular Spaces, vol. 1034 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1983.
  • A. Pringsheim, “Zur Theorie der zweifach unendlichen Zahlenfolgen,” Mathematische Annalen, vol. 53, no. 3, pp. 289–321, 1900.
  • R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan & Co., London, UK, 1950.
  • G. M. Robison, “Divergent double sequences and series,” Transactions of the American Mathematical Society, vol. 28, no. 1, pp. 50–73, 1926.
  • H. J. Hamilton, “Transformations of multiple sequences,” Duke Mathematical Journal, vol. 2, no. 1, pp. 29–60, 1936.
  • I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, UK, 2nd edition, 1988.
  • S. Simons, “The sequence spaces $l({p}_{\nu })$ and $m({p}_{\nu })$,” Proceedings of the London Mathematical Society, vol. 15, pp. 422–436, 1965.
  • T. Yurdakadim and E. Tas, “Double sequences and Orlicz functions,” Periodica Mathematica Hungarica, vol. 67, no. 1, pp. 47–54, 2013. \endinput