Abstract and Applied Analysis

On the Parametric Stokes Phenomenon for Solutions of Singularly Perturbed Linear Partial Differential Equations

Stéphane Malek

Full-text: Open access

Abstract

We study a family of singularly perturbed linear partial differential equations with irregular type ϵ t 2 t z S X i ( t , z , ϵ ) + ( ϵ t + 1 ) z S X i ( t , z , ϵ ) = ( s , k 0 , k 1 ) 𝒮 b s , k 0 , k 1 ( z , ϵ ) t s t k 0 z k 1 X i ( t , z , ϵ ) in the complex domain. In a previous work, Malek (2012), we have given sufficient conditions under which the Borel transform of a formal solution to the above mentioned equation with respect to the perturbation parameter ϵ converges near the origin in and can be extended on a finite number of unbounded sectors with small opening and bisecting directions, say κ i [ 0 , 2 π ) , 0 i ν 1 for some integer ν 2 . The proof rests on the construction of neighboring sectorial holomorphic solutions to the first mentioned equation whose differences have exponentially small bounds in the perturbation parameter (Stokes phenomenon) for which the classical Ramis-Sibuya theorem can be applied. In this paper, we introduce new conditions for the Borel transform to be analytically continued in the larger sectors { ϵ / arg ( ϵ ) ( κ i , κ i + 1 ) } , where it develops isolated singularities of logarithmic type lying on some half lattice. In the proof, we use a criterion of analytic continuation of the Borel transform described by Fruchard and Schäfke (2011) and is based on a more accurate description of the Stokes phenomenon for the sectorial solutions mentioned above.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 930385, 86 pages.

Dates
First available in Project Euclid: 7 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1399487811

Digital Object Identifier
doi:10.1155/2012/930385

Mathematical Reviews number (MathSciNet)
MR3004935

Zentralblatt MATH identifier
1257.35027

Citation

Malek, Stéphane. On the Parametric Stokes Phenomenon for Solutions of Singularly Perturbed Linear Partial Differential Equations. Abstr. Appl. Anal. 2012 (2012), Article ID 930385, 86 pages. doi:10.1155/2012/930385. https://projecteuclid.org/euclid.aaa/1399487811


Export citation

References

  • T. Mandai, “Existence and nonexistence of null-solutions for some non-Fuchsian partial differential operators with \emphT-dependent coefficients,” Nagoya Mathematical Journal, vol. 122, pp. 115–137, 1991.
  • S. Malek, “On the summability of formal solutions for doubly singular nonlinear partial differential equations,” Journal of Dynamical and Control Systems, vol. 18, no. 1, pp. 45–82, 2012.
  • A. Fruchard and R. Schäfke, “On the parametric resurgence for a certain singularly perturbed linear differential equation of second order,” in Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation, vol. 2 of Crm series, pp. 213–243, Scuola Normale Superiore, 2011.
  • T. Aoki, T. Kawai, and Y. Takei, “The Bender-Wu analysis and the Voros theory. II,” in Algebraic Analysis and Around, vol. 54 of Advanced Studies in Pure Mathematics, pp. 19–94, Mathematical Society of Japan, Tokyo, Japan, 2009.
  • É. Delabaere, H. Dillinger, and F. Pham, “Résurgence de Voros et périodes des courbes hyperelliptiques,” Université de Grenoble. Annales de l'Institut Fourier, vol. 43, no. 1, pp. 163–199, 1993.
  • J. Écalle, Les Fonctions Résurgentes, Publications Mathématiques d'Orsay, 1981.
  • B. Braaksma and R. Kuik, “Resurgence relations for classes of differential and difference equations,” Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6, vol. 13, no. 4, pp. 479–492, 2004.
  • O. Costin, “On Borel summation and Stokes phenomena for rank-$q$ nonlinear systems of ordinary differential equations,” Duke Mathematical Journal, vol. 93, no. 2, pp. 289–344, 1998.
  • J. Écalle, Les Fonctions Résurgentes. Tome II, vol. 6, Département de Mathématique, Université de Paris-Sud, Orsay, France, 1981.
  • B. Malgrange, “Introduction aux travaux de J. Écalle,” L'Enseignement Mathématique, vol. 31, no. 3-4, pp. 261–282, 1985.
  • J. Écalle, “Classification analytique des champs hamiltoniens locaux. Invariants holomorphes et hamiltoniens étrangers,” Astérisque, no. 150-151, pp. 67–86, 1987.
  • D. Sauzin, “Mould expansions for the saddle-node and resurgence monomials,” in Renormalization and Galois Theories, vol. 15 of IRMA Lectures in Mathematics and Theoretical Physics, pp. 83–163, European Mathematical Society, Zurich, Switzerland, 2009.
  • C. Olivé, D. Sauzin, and T. M. Seara, “Resurgence in a Hamilton-Jacobi equation,” Annales de l'Institut Fourier, vol. 53, no. 4, pp. 1185–1235, 2003.
  • S. Malek, “On the Stokes phenomenon for holomorphic solutions of integro-differential equations with irregular singularity,” Journal of Dynamical and Control Systems, vol. 14, no. 3, pp. 371–408, 2008.
  • J. Leray, “Problème de Cauchy. I. Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy,” Bulletin de la Société Mathématique de France, vol. 85, pp. 389–429, 1957.
  • Y. Hamada, “The singularities of the solutions of the Cauchy problem,” Publications of the Research Institute for Mathematical Sciences, vol. 5, pp. 21–40, 1969.
  • S. Ōuchi, “An integral representation of singular solutions of linear partial differential equations in the complex domain,” Journal of the Faculty of Science. University of Tokyo. Section IA, vol. 27, no. 1, pp. 37–85, 1980.
  • S. Ōuchi, “The behaviour near the characteristic surface of singular solutions of linear partial differential equations in the complex domain,” Proceedings of the Japan Academy, Series A, vol. 65, no. 4, pp. 102–105, 1989.
  • Y. Hamada, J. Leray, and C. Wagschal, “Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié; hyperbolicité partielle,” Journal de Mathématiques Pures et Appliquées. Neuvième Série, vol. 55, no. 3, pp. 297–352, 1976.
  • K. Igari, “On the branching of singularities in complex domains,” Japan Academy. Proceedings. Series A, vol. 70, no. 5, pp. 128–130, 1994.
  • B. Sternin and V. Shatalov, Differential Equations on Complex Manifolds, vol. 276, Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1994.
  • C. Wagschal, “Sur le problème de Cauchy ramifié,” Journal de Mathématiques Pures et Appliquées, vol. 53, pp. 147–163, 1974.
  • H. Yamane, “Ramified Cauchy problem for a class of Fuchsian operators with tangent characteristics,” Journal de Mathématiques Pures et Appliquées, vol. 79, no. 3, pp. 271–294, 2000.
  • W. Rudin, Functional Analysis, McGraw-Hill, New York, NY, USA, 2nd edition, 1991.
  • R. Kuik, Transseries in difference and differential equations [thesis], Rijksuniversiteit, Groningen, The Netherlands, 2003.
  • S. Malek, “On singularly perturbed partial integro-differential equations with irregular singularity,” Journal of Dynamical and Control Systems, vol. 13, no. 3, pp. 419–449, 2007.
  • W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations, Springer, New York, NY, USA, 2000.
  • A. Fruchard and R. Schäfke, “On the Borel transform,” Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 323, no. 9, pp. 999–1004, 1996.