Abstract and Applied Analysis

On the Hyers-Ulam Stability of a General Mixed Additive and Cubic Functional Equation in n-Banach Spaces

Tian Zhou Xu and John Michael Rassias

Full-text: Open access

Abstract

The objective of the present paper is to determine the generalized Hyers-Ulam stability of the mixed additive-cubic functional equation in n-Banach spaces by the direct method. In addition, we show under some suitable conditions that an approximately mixed additive-cubic function can be approximated by a mixed additive and cubic mapping.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 926390, 23 pages.

Dates
First available in Project Euclid: 7 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1399487783

Digital Object Identifier
doi:10.1155/2012/926390

Mathematical Reviews number (MathSciNet)
MR2914890

Zentralblatt MATH identifier
1237.39036

Citation

Xu, Tian Zhou; Rassias, John Michael. On the Hyers-Ulam Stability of a General Mixed Additive and Cubic Functional Equation in n -Banach Spaces. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 926390, 23 pages. doi:10.1155/2012/926390. https://projecteuclid.org/euclid.aaa/1399487783


Export citation

References

  • Z. Moszner, “On the stability of functional equations,” Aequationes Mathematicae, vol. 77, no. 1-2, pp. 33–88, 2009.
  • S. M. Ulam, A Collection of Mathematical Problems, vol. 8 of Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, NY, USA, 1960.
  • D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
  • T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64–66, 1950.
  • T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
  • P. Găvruţa, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994.
  • R. P. Agarwal, B. Xu, and W. Zhang, “Stability of functional equations in single variable,” Journal of Mathematical Analysis and Applications, vol. 288, no. 2, pp. 852–869, 2003.
  • A. Najati and G. Z. Eskandani, “Stability of a mixed additive and cubic functional equation in quasi-Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1318–1331, 2008.
  • W.-G. Park, “Approximate additive mappings in 2-Banach spaces and related topics,” Journal of Mathematical Analysis and Applications, vol. 376, no. 1, pp. 193–202, 2011.
  • R. Saadati, Y. J. Cho, and J. Vahidi, “The stability of the quartic functional equation in various spaces,” Computers & Mathematics with Applications, vol. 60, no. 7, pp. 1994–2002, 2010.
  • T. Z. Xu, J. M. Rassias, and W. X. Xu, “Generalized Hyers-Ulam stability of a general mixed additive-cubic functional equation in quasi-Banach spaces,” Acta Mathematica Sinica, English Series, vol. 28, no. 3, pp. 529–560, 2011.
  • T. Z. Xu, J. M. Rassias, and W. X. Xu, “Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces,” Journal of Mathematical Physics, vol. 51, no. 9, Article ID 093508, 19 pages, 2010.
  • S. Gähler, “2-metrische Räume und ihre topologische Struktur,” Mathematische Nachrichten, vol. 26, pp. 115–148, 1963.
  • S. Gähler, “Lineare 2-normierte Räume,” Mathematische Nachrichten, vol. 28, pp. 1–43, 1964.
  • Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science, Huntington, NY, USA, 2001.
  • A. Misiak, “n-inner product spaces,” Mathematische Nachrichten, vol. 140, pp. 299–319, 1989.
  • X. Y. Chen and M. M. Song, “Characterizations on isometries in linear n-normed spaces,” Nonlinear Analysis, vol. 72, no. 3-4, pp. 1895–1901, 2010.
  • S. Gähler, “Über 2-Banach-Räume,” Mathematische Nachrichten, vol. 42, pp. 335–347, 1969.
  • A. G. White, Jr., “2-Banach spaces,” Mathematische Nachrichten, vol. 42, pp. 43–60, 1969.