Abstract and Applied Analysis

Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

Fuxi Shi, Qin Zhang, Jun Chen, and Hamid Reza Karimi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures ( 293 < T / K < 393 ) and pressures ( 0.1 < P / MPa < 210 ) , which represent the typical values used in dynamic injection process for diesel engines, the calculated results consistency of three formulas demonstrated their effectiveness with the maximum 0.5384% OARD; meanwhile, the dependency on pressure and temperature of molecular compressibility was certified.

Article information

Abstr. Appl. Anal., Volume 2014 (2014), Article ID 512576, 10 pages.

First available in Project Euclid: 26 March 2014

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier


Shi, Fuxi; Zhang, Qin; Chen, Jun; Karimi, Hamid Reza. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature. Abstr. Appl. Anal. 2014 (2014), Article ID 512576, 10 pages. doi:10.1155/2014/512576. https://projecteuclid.org/euclid.aaa/1395858252

Export citation


  • F. Boudy and P. Seers, “Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system,” Energy Conversion and Management, vol. 50, no. 12, pp. 2905–2912, 2009.
  • A. L. Boehman, D. Morris, J. Szybist, and E. Esen, “The impact of the bulk modulus of diesel fuels on fuel injection timing,” Energy & Fuels, vol. 18, no. 6, pp. 1877–1882, 2004.
  • M. E. Tat and J. H. van Gerpen, “Measurement of biodiesel sound velocity and its impact on injection timing,” Final Report for National Renewable Energy Laboratory ACG-8-18066-11, 2000.
  • G. Knothe, “`Designer' biodiesel: optimizing fatty ester composition to improve fuel properties,” Energy & Fuels, vol. 22, no. 2, pp. 1358–1364, 2008.
  • G. Knothe, C. A. Sharp, and T. W. Ryan III, “Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine,” Energy & Fuels, vol. 20, no. 1, pp. 403–408, 2006.
  • R. Payri, F. J. Salvador, J. Gimeno, and G. Bracho, “The effect of temperature and pressure on thermodynamic properties of diesel and biodiesel fuels,” Fuel, vol. 90, no. 3, pp. 1172–1180, 2011.
  • M. R. Rao, “The adiabatic compressibility of liquids,” The Journal of Chemical Physics, vol. 14, p. 699, 1946.
  • Y. Wada, “On the relation between compressibility and molal volume of organic liquids,” Journal of the Physical Society of Japan, vol. 4, no. 4-6, pp. 280–283, 1949.
  • W. Schaaffs, “Schllgeschwindigkeit und Molekülstuktur in Flüssigkeiten,” Zeitschrift für Physikalische Chemie, vol. 196, p. 413, 1951.
  • W. Schaaffs, “Der ultraschall und die struktur der flüssigkeiten,” Il Nuovo Cimento, vol. 7, no. 2, supplement, pp. 286–295, 1950.
  • W. Schaaffs, “Die Additivitiätsgesgtze der schllgeschwindigkeit in flüssigkeiten,” Ergebnisse der Exakten Naturwiss, vol. 25, p. 109, 1951.
  • J. L. Daridon, J. A. P. Coutinho, E. H. I. Ndiaye, and M. L. L. Paredes, “Novel data and a group contribution method for the prediction of the sound velocity and isentropic Compressibility of pure fatty acids methyl and ethyl esters,” Fuel, vol. 105, pp. 466–470, 2013.
  • S. V. D. Freitas, D. L. Cunha, R. A. Reis et al., “Application of wada's group contribution method to the prediction of the sound velocity of biodiesel,” Energy & Fuels, vol. 27, no. 3, pp. 1365–1370, 2013.
  • S. V. D. Freitas, A. Santos, M. L. C. J. Moita et al., “Measurement and prediction of speeds of sound of fatty acid ethyl esters and ethylic biodiesels,” Fuel, vol. 108, pp. 840–845, 2013.
  • E. H. I. Ndiaye, D. Nasri, and J. L. Daridon, “Sound velocity, density, and derivative properties of fatty acid methyl and ethyl esters under high pressure: methyl caprate and ethyl caprate,” Journal of Chemical & Engineering Data, vol. 57, no. 10, pp. 2667–2676, 2012.
  • S. V. D. Freitas, M. L. L. Paredes, J. L. Daridon, A. S. Lima, and J. A. P. Coutinho, “Measurement and prediction of the speed of sound of biodiesel fuels,” Fuel, vol. 103, pp. 1018–1022, 2013.
  • F. Shi and J. Chen, “Influence of injection temperature on atomization characteristics of biodiesel,” Transactions of the Chinese Society of Agricultural Machinery, vol. 44, no. 7, pp. 33–38, 2013.
  • M. C. Costa, L. A. D. Boros, M. L. S. Batista, J. A. P. Coutinho, M. A. Kraenbuhl, and A. J. A. Meirelles, “Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters,” Fuel, vol. 91, no. 1, pp. 177–181, 2012.
  • O. C. Didz, Measurement and Modelling Methodology for Heavy Oil and Bitumen Vapour Pressure, University of Calgary, 2012.
  • D. L. Cunha, J. A. P. Coutinho, R. A. Reis, and M. L. L. Paredes, “An atomic contribution model for the prediction of speed of sound,” Fluid Phase Equilibria, vol. 358, pp. 108–113, 2013.
  • M. E. Tat, J. H. Van Gerpen, S. Soylu, M. Canakci, A. Monyem, and S. Wormley, “The sound velocity and isentropic bulk modulus of biodiesel at 21$^{\circ }$C from atmospheric pressure to 35 MPa,” Journal of the American Oil Chemists' Society, vol. 77, no. 3, pp. 285–289, 2000.
  • M. E. Tat and J. H. van Gerpen, “Speed of sound and isentropic bulk modulus of alkyl monoesters at elevated temperatures and pressures,” Journal of the American Oil Chemists' Society, vol. 80, no. 12, pp. 1249–1256, 2003.
  • L. A. Davis and R. B. Gordon, “Compression of mercury at high pressure,” The Journal of Chemical Physics, vol. 46, no. 7, pp. 2650–2660, 1967.
  • J. L. Daridon, B. Lagourette, and J. P. Grolier, “Experimental measurements of the speed of sound in n-Hexane from 293 to 373 K and up to 150 MPa,” International Journal of Thermophysics, vol. 19, no. 1, pp. 145–160, 1998.
  • J. E. Lennard-Jones, “On the determination of molecular fields. II.From the equation of state of a gas,” Proceedings of the Royal Society of London A, vol. 106, no. 738, pp. 463–477, 1924.
  • K. Huang, Statistical Mechanics, John Wiley & Sons, 2nd edition, 1987.
  • J. R. Elliott Jr., S. J. Suresh, and M. D. Donohue, “A simple equation of state for nonspherical and associating molecules,” Industrial & Engineering Chemistry Research, vol. 29, no. 7, pp. 1476–1485, 1990.
  • J. H. Park and H. K. Kim, “Dual-microphone voice activity detection incorporating gaussian mixture models with an error correction scheme in non-stationary noise environments,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 6, pp. 2533–2542, 2013. \endinput