Open Access
2014 On an Interpolation Based Spectral Homotopy Analysis Method for PDE Based Unsteady Boundary Layer Flows
S. S. Motsa
Abstr. Appl. Anal. 2014(SI21): 1-7 (2014). DOI: 10.1155/2014/848170

Abstract

This work presents a new approach to the application of the spectral homotopy analysis method (SHAM) in solving non-linear partial differential equations (PDEs). The proposed approach is based on an innovative idea of seeking solutions that obey a rule of solution expression that is defined in terms of bivariate Lagrange interpolation polynomials. The applicability and effectiveness of the expanded SHAM approach are tested on a non-linear PDE that models the problem of unsteady boundary layer flow caused by an impulsively stretching plate. Numerical simulations are conducted to generate results for the important flow properties such as the local skin friction. The accuracy of the present results is validated against existing results from the literature and against results generated using the Keller-box method. The preliminary results from the proposed study indicate that the present method is more accurate and computationally efficient than more traditional methods used for solving PDEs that describe nonsimilar boundary layer flow.

Citation

Download Citation

S. S. Motsa. "On an Interpolation Based Spectral Homotopy Analysis Method for PDE Based Unsteady Boundary Layer Flows." Abstr. Appl. Anal. 2014 (SI21) 1 - 7, 2014. https://doi.org/10.1155/2014/848170

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 07023190
MathSciNet: MR3166659
Digital Object Identifier: 10.1155/2014/848170

Rights: Copyright © 2014 Hindawi

Vol.2014 • No. SI21 • 2014
Back to Top