## Abstract and Applied Analysis

### Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products

Li Yang, Wei Zhang, and Jinli Xu

#### Abstract

Suppose $m,n\ge \mathrm{2}$ are positive integers. Let ${\mathrm{\scr T}}_{n}$ be the space of all $n{\times}n$ complex upper triangular matrices, and let $\varphi$ be an injective linear map on ${\mathrm{\scr T}}_{m}\otimes {\mathrm{\scr T}}_{n}$. Then $\varphi (A\otimes B)$ is an idempotent matrix in ${\mathrm{\scr T}}_{m}\otimes {\mathrm{\scr T}}_{n}$ whenever $A\otimes B$ is an idempotent matrix in ${\mathrm{\scr T}}_{m}\otimes {\mathrm{\scr T}}_{n}$ if and only if there exists an invertible matrix $P\in {\mathrm{\scr T}}_{m}\otimes {\mathrm{\scr T}}_{n}$ such that $\varphi (A\otimes B)=P({\xi }_{\mathrm{1}}(A)\otimes {\xi }_{\mathrm{2}}(B)){P}^{-\mathrm{1}}, \forall A\in {\mathrm{\scr T}}_{m},\mathrm{ B}\in {\mathrm{\scr T}}_{n}$, or when $m=n$, $\varphi (A\otimes B)=P({\xi }_{\mathrm{1}}(B)\otimes {\xi }_{\mathrm{2}}(A)){P}^{-\mathrm{1}}, \forall A\in {\mathrm{\scr T}}_{m},\mathrm{ B}\in {\mathrm{\scr T}}_{m}$, where ${\xi }_{\mathrm{1}}([{a}_{ij}])=[{a}_{ij}]$ or ${\xi }_{\mathrm{1}}([{a}_{ij}])=[{a}_{m-i+\mathrm{1},m-j+\mathrm{1}}]$ and ${\xi }_{\mathrm{2}}([{b}_{ij}])=[{b}_{ij}]$ or ${\xi }_{\mathrm{2}}([{b}_{ij}])=[{b}_{n-i+\mathrm{1},n-j+\mathrm{1}}].$

#### Article information

Source
Abstr. Appl. Anal., Volume 2014, Special Issue (2013), Article ID 148321, 8 pages.

Dates
First available in Project Euclid: 26 March 2014

https://projecteuclid.org/euclid.aaa/1395857995

Digital Object Identifier
doi:10.1155/2014/148321

Mathematical Reviews number (MathSciNet)
MR3166569

Zentralblatt MATH identifier
1142.11027

#### Citation

Yang, Li; Zhang, Wei; Xu, Jinli. Linear Maps on Upper Triangular Matrices Spaces Preserving Idempotent Tensor Products. Abstr. Appl. Anal. 2014, Special Issue (2013), Article ID 148321, 8 pages. doi:10.1155/2014/148321. https://projecteuclid.org/euclid.aaa/1395857995

#### References

• \setlengthemsep0.6pt C.-K. Li and S. Pierce, “Linear preserver problems,” The American Mathematical Monthly, vol. 108, no. 7, pp. 591–605, 2001.
• L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, vol. 1895 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2007.
• G. H. Chan, M. H. Lim, and K.-K. Tan, “Linear preservers on matrices,” Linear Algebra and Its Applications, vol. 93, pp. 67–80, 1987.
• P. Šemrl, “Applying projective geometry to transformations on rank one idempotents,” Journal of Functional Analysis, vol. 210, no. 1, pp. 248–257, 2004.
• X. M. Tang, C. G. Cao, and X. Zhang, “Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings,” Linear Algebra and its Applications, vol. 338, pp. 145–152, 2001.
• N. Jacobson, Lectures in Abstract Algebra, vol. 2, D. van Nostrand, Toronto, Canada, 1953.
• T. Oikhberg and A. M. Peralta, “Automatic continuity of orthogonality preservers on a non-commutative ${L}^{p}(\tau )$ space,” Journal of Functional Analysis, vol. 264, no. 8, pp. 1848–1872, 2013.
• M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, “Mappings preserving zero products,” Studia Mathematica, vol. 155, no. 1, pp. 77–94, 2003.
• C.-W. Leung, C.-K. Ng, and N.-C. Wong, “Linear orthogonality preservers of Hilbert ${C}^{\ast\,\!}$-modules over ${C}^{\ast\,\!}$-algebras with real rank zero,” Proceedings of the American Mathematical Society, vol. 140, no. 9, pp. 3151–3160, 2012.
• I. V. Konnov and J. C. Yao, “On the generalized vector variational inequality problem,” Journal of Mathematical Analysis and Applications, vol. 206, no. 1, pp. 42–58, 1997.
• D. Huo, B. Zheng, and H. Liu, “Characterizations of nonlinear Lie derivations of $B(X)$,” Abstract and Applied Analysis, vol. 2013, Article ID 245452, 7 pages, 2013.
• H. Yao and B. Zheng, “Zero triple product determined matrix algebras,” Journal of Applied Mathematics, vol. 2012, Article ID 925092, 18 pages, 2012.
• J. Xu, B. Zheng, and L. Yang, “The automorphism group of the Lie ring of real skew-symmetric matrices,” Abstract and Applied Analysis, vol. 2013, Article ID 638230, 8 pages, 2013.
• X. Song, C. Cao, and B. Zheng, “A note on $k$-potence preservers on matrix spaces over complex field,” Abstract and Applied Analysis, vol. 2013, Article ID 581683, 8 pages, 2013.
• A. Fosner, Z. Haung, C. K. Li, and N. S. Sze, “Linear preservers and quantum information science,” Linear and Multilinear Algebra, vol. 61, no. 10, pp. 1377–1390, 2013.
• M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
• J. Xu, B. Zheng, and H. Yao, “Linear transformations between multipartite quantum systems that map the set of tensor product of idempotent matrices into idempotent matrix set,” Journal of Function Spaces and Applications, vol. 2013, Article ID 182569, 7 pages, 2013.
• B. D. Zheng, J. L. Xu, and A. Fosner, “Linear maps preserving rank of tensor products of matrices,” Linear and Multilinear Algebra. In press.
• J. L. Xu, B. D. Zheng, and C. G. Cao, “A characterization of comparable tableauxčommentComment on ref. [6?]: Please update the information of these references [6, 19?], if possible.,” Submitted to Journal of Combinatorial Theory A. \endinput