Abstract and Applied Analysis

Lagrangian Duality for Multiobjective Programming Problems in Lexicographic Order

X. F. Hu and L. N. Wang

Full-text: Open access

Abstract

This paper deals with a constraint multiobjective programming problem and its dual problem in the lexicographic order. We establish some duality theorems and present several existence results of a Lagrange multiplier and a lexicographic saddle point theorem. Meanwhile, we study the relations between the lexicographic saddle point and the lexicographic solution to a multiobjective programming problem.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 573408, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512134

Digital Object Identifier
doi:10.1155/2013/573408

Mathematical Reviews number (MathSciNet)
MR3129339

Zentralblatt MATH identifier
1291.90218

Citation

Hu, X. F.; Wang, L. N. Lagrangian Duality for Multiobjective Programming Problems in Lexicographic Order. Abstr. Appl. Anal. 2013 (2013), Article ID 573408, 6 pages. doi:10.1155/2013/573408. https://projecteuclid.org/euclid.aaa/1393512134


Export citation

References

  • H. W. Corley, “Duality theory for maximizations with respect to cones,” Journal of Mathematical Analysis and Applications, vol. 84, no. 2, pp. 560–568, 1981.
  • H. W. Corley, “Existence and lagrangian duality for maximizations of set-valued functions,” Journal of Optimization Theory and Applications, vol. 54, no. 3, pp. 489–501, 1987.
  • P. C. Fishburn, “Lexicographic orders, utilities and decision rules: a survey,” Management Science, vol. 20, pp. 1442–1471, 1974.
  • W.-S. Hsia and T. Y. Lee, “Lagrangian function and duality theory in multiobjective programming with set functions,” Journal of Optimization Theory and Applications, vol. 57, no. 2, pp. 239–251, 1988.
  • E. Hernández and L. Rodríguez-Marín, “Lagrangian duality in set-valued optimization,” Journal of Optimization Theory and Applications, vol. 134, no. 1, pp. 119–134, 2007.
  • J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, vol. 31 of Methoden und Verfahren der Mathematischen Physik, Peter Lang, Frankfurt, Germany, 1986.
  • Z.-F. Li and G.-Y. Chen, “Lagrangian multipliers, saddle points, and duality in vector optimization of set-valued maps,” Journal of Mathematical Analysis and Applications, vol. 215, no. 2, pp. 297–316, 1997.
  • Z. F. Li and S. Y. Wang, “Lagrange multipliers and saddle points in multiobjective programming,” Journal of Optimization Theory and Applications, vol. 83, no. 1, pp. 63–81, 1994.
  • W. Song, “Lagrangian duality for minimization of nonconvex multifunctions,” Journal of Optimization Theory and Applications, vol. 93, no. 1, pp. 167–182, 1997.
  • Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, vol. 176 of Mathematics in Science and Engineering, Academic Press, Orlando, Fla, USA, 1985.
  • T. Tanino and Y. Sawaragi, “Duality theory in multiobjective programming,” Journal of Optimization Theory and Applications, vol. 27, no. 4, pp. 509–529, 1979.
  • I. V. Konnov, “On lexicographic vector equilibrium problems,” Journal of Optimization Theory and Applications, vol. 118, no. 3, pp. 681–688, 2003.
  • X. B. Li, S. J. Li, and Z. M. Fang, “A minimax theorem for vector-valued functions in lexicographic order,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 4, pp. 1101–1108, 2010.
  • M. M. Mäkelä and Y. Nikulin, “On cone characterizations of strong and lexicographic optimality in convex multiobjective optimization,” Journal of Optimization Theory and Applications, vol. 143, no. 3, pp. 519–538, 2009.
  • J. E. Martínez-Legaz, “Lexicographical order, inequality systems and optimization,” in System Modelling and Optimization, P. Thoft-Christensen, Ed., vol. 59 of Lecture Notes in Control and Information Sciences, pp. 203–212, Springer, Berlin, Germany, 1984.
  • J.-E. Martínez-Legaz, “Lexicographical order and duality in multiobjective programming,” European Journal of Operational Research, vol. 33, no. 3, pp. 342–348, 1988.
  • V. V. Podinovskii and V. M. Gavrilov, Optimization with Respect to Sequentially Applied Criteria, Sovetskoe Radio, Moscow, Russia, 1976, (Russian).
  • L. Pourkarimi and M. Zarepisheh, “A dual-based algorithm for solving lexicographic multiple objective programs,” European Journal of Operational Research, vol. 176, no. 3, pp. 1348–1356, 2007.
  • N. Popovici, “Structure of efficient sets in lexicographic quasiconvex multicriteria optimization,” Operations Research Letters, vol. 34, no. 2, pp. 142–148, 2006.