Abstract and Applied Analysis

The Shared Set and Uniqueness of Meromorphic Functions on Annuli

Hong Yan Xu and Zhao Jun Wu

Full-text: Open access

Abstract

The purpose of this paper is to deal with the shared set and uniqueness of meromorphic functions on annulus. The set of this paper is different from the set of the paper by Cao and Deng, and our theorems are improvement of the results given by Cao and Deng.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 758318, 10 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512114

Digital Object Identifier
doi:10.1155/2013/758318

Mathematical Reviews number (MathSciNet)
MR3126749

Zentralblatt MATH identifier
07095333

Citation

Xu, Hong Yan; Wu, Zhao Jun. The Shared Set and Uniqueness of Meromorphic Functions on Annuli. Abstr. Appl. Anal. 2013 (2013), Article ID 758318, 10 pages. doi:10.1155/2013/758318. https://projecteuclid.org/euclid.aaa/1393512114


Export citation

References

  • R. Nevanlinna, “Eindentig keitssätze in der theorie der meromorphen funktionen,” Acta Mathematica, vol. 48, no. 3-4, pp. 367–391, 1926.
  • A. Banerjee, “Weighted sharing of a small function by a meromorphic function and its derivative,” Computers & Mathematics with Applications, vol. 53, no. 11, pp. 1750–1761, 2007.
  • T.-B. Cao and H.-X. Yi, “On the uniqueness of meromorphic functions that share four values in one angular domain,” Journal of Mathematical Analysis and Applications, vol. 358, no. 1, pp. 81–97, 2009.
  • W. C. Lin, S. Mori, and K. Tohge, “Uniqueness theorems in an angular domain,” The Tohoku Mathematical Journal, vol. 58, no. 4, pp. 509–527, 2006.
  • C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.
  • X.-Y. Zhang, J.-F. Chen, and W.-C. Lin, “Entire or meromorphic functions sharing one value,” Computers & Mathematics with Applications, vol. 56, no. 7, pp. 1876–1883, 2008.
  • J.-H. Zheng, “On uniqueness of meromorphic functions with shared values in some angular domains,” Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques, vol. 47, no. 1, pp. 152–160, 2004.
  • J.-H. Zheng, “On uniqueness of meromorphic functions with shared values in one angular domain,” Complex Variables, vol. 48, no. 9, pp. 777–785, 2003.
  • W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, UK, 1964.
  • L. Yang, Value Distribution Theory, Springer-Science Press, Berlin, Germany, 1993.
  • S. Axler, “Harmonic functions from a complex analysis viewpoint,” The American Mathematical Monthly, vol. 93, no. 4, pp. 246–258, 1986.
  • Y. X. Chen and Z. J. Wu, “Exceptional values of meromorphic functions and of their derivatives on annuli,” Annales Polonici Mathematici, vol. 105, no. 2, pp. 167–177, 2012.
  • A. Y. Khrystiyanyn and A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli–-I,” Matematychni Studii, vol. 23, no. 1, pp. 19–30, 2005.
  • A. Y. Khrystiyanyn and A. A. Kondratyuk, “On the Nevanlinna theory for meromorphic functions on annuli–-II,” Matematychni Studii, vol. 24, no. 1, pp. 57–68, 2005.
  • R. Korhonen, “Nevanlinna theory in an annulus, value distribution theory and related topics,” Advances in Complex Analysis and Its Applications, vol. 3, pp. 167–179, 2004.
  • M. E. Lund and Z. Ye, “Logarithmic derivatives in annuli,” Journal of Mathematical Analysis and Applications, vol. 356, no. 2, pp. 441–452, 2009.
  • M. Lund and Z. Ye, “Nevanlinna theory of meromorphic functions on annuli,” Science China. Mathematics, vol. 53, no. 3, pp. 547–554, 2010.
  • H. Y. Xu and Z. X. Xuan, “The uniqueness of analyticfunctions on annuli sharing some values,” Abstract and Applied Analysis, vol. 2012, Article ID 896596, 13 pages, 2012.
  • H. Y. Xu, “Exceptional values of meromorphic function on annulus,” The Scientific World Journal, vol. 2013, Article ID 937584, 7 pages, 2013.
  • A. A. Kondratyuk and I. Laine, “Meromorphic functions in multiply connected domains,” in Proceedings of the Workshop, I. Laine, Ed., Fourier series methods in complex analysis, University of Joensuu, Department of Mathematics, Joensuu, Finland, 2005.
  • T. B. Cao and H. X. Yi, “Uniqueness theorems for meromorphic functions sharing sets IM on annuli,” Acta Mathematica Sinica, vol. 54, no. 4, pp. 623–632, 2011 (Chinese).
  • T.-B. Cao, H.-X. Yi, and H.-Y. Xu, “On the multiple values and uniqueness of meromorphic functions on annuli,” Computers & Mathematics with Applications, vol. 58, no. 7, pp. 1457–1465, 2009.
  • T.-B. Cao and Z.-S. Deng, “On the uniqueness of meromorphic functions that share three or two finite sets on annuli,” Proceedings of the Indian Academy of Sciences, vol. 122, no. 2, pp. 355–369, 2012.
  • W.-C. Lin and H.-X. Yi, “Uniqueness theorems for meromorphic functions that share three sets,” Complex Variables, vol. 48, no. 4, pp. 315–327, 2003.
  • G. Frank and M. Reinders, “A unique range set for meromorphic functions with 11 elements,” Complex Variables, vol. 37, no. 1–4, pp. 185–193, 1998.
  • A. Z. Mokhon'ko, “The Nevanlinna characteristics of some meromorphic functions,” Functional Analysis and Their Applications, vol. 14, pp. 83–87, 1971.