Abstract and Applied Analysis

New Convergence Definitions for Sequences of Sets

Ömer Kişi and Fatih Nuray

Full-text: Open access


Several notions of convergence for subsets of metric space appear in the literature. In this paper, we define Wijsman   I -convergence and Wijsman   I * -convergence for sequences of sets and establish some basic theorems. Furthermore, we introduce the concepts of Wijsman  I-Cauchy sequence and Wijsman I * -Cauchy sequence and then study their certain properties.

Article information

Abstr. Appl. Anal., Volume 2013 (2013), Article ID 852796, 6 pages.

First available in Project Euclid: 27 February 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Kişi, Ömer; Nuray, Fatih. New Convergence Definitions for Sequences of Sets. Abstr. Appl. Anal. 2013 (2013), Article ID 852796, 6 pages. doi:10.1155/2013/852796. https://projecteuclid.org/euclid.aaa/1393512112

Export citation


  • J.-P. Aubin and H. Frankowska, Set-Valued Analysis, vol. 2, Birkhäuser, Boston, Mass, USA, 1990.
  • M. Baronti and P. L. Papini, “Convergence of sequences of sets,” in Methods of Functional Analysis in Approximation Theory, vol. 76, pp. 135–155, Birkhäuser, Basel, Switzerland, 1986.
  • G. Beer, “Convergence of continuous linear functionals and their level sets,” Archiv der Mathematik, vol. 52, no. 5, pp. 482–491, 1989.
  • G. Beer, “On convergence of closed sets in a metric space and distance functions,” Bulletin of the Australian Mathematical Society, vol. 31, no. 3, pp. 421–432, 1985.
  • J. Borwein and J. Vanderwerff, “Dual Kadec-Klee norms and the relationships between Wijsman, slice, and Mosco convergence,” The Michigan Mathematical Journal, vol. 41, no. 2, pp. 371–387, 1994.
  • O. Kisi and F. Nuray, “On ${S}_{\lambda }^{L}$ (I)-asymptotically statistical equivalence of sequences of sets,” Mathematical Analysis, vol. 2013, Article ID 602963, 6 pages, 2013.
  • Y. Sonntag and C. Zălinescu, “Set convergences: an attempt of classification,” Transactions of the American Mathematical Society, vol. 340, no. 1, pp. 199–226, 1993.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions,” Bulletin of the American Mathematical Society, vol. 70, pp. 186–188, 1964.
  • R. A. Wijsman, “Convergence of sequences of convex sets, cones and functions. II,” Transactions of the American Mathematical Society, vol. 123, pp. 32–45, 1966.
  • R. C. Buck, “Generalized asymptotic density,” The American Journal of Mathematics, vol. 75, pp. 335–346, 1953.
  • H. Fast, “Sur la convergence statistique,” Colloquium Mathematicae, vol. 2, pp. 241–244, 1951.
  • I. J. Schoenberg, “The integrability of certain functions and related summability methods,” The American Mathematical Monthly, vol. 66, pp. 361–375, 1959.
  • P. Kostyrko, M. Mačaj, T. Šalát, and M. Sleziak, “$I$-convergence and extremal $I$-limit points,” Mathematica Slovaca, vol. 55, no. 4, pp. 443–464, 2005.
  • P. Kostyrko, T. Šalát, and W. Wilczyński, “$I$-convergence,” Real Analysis Exchange, vol. 26, no. 2, pp. 669–685, 2000.
  • A. R. Freedman and J. J. Sember, “Densities and summability,” Pacific Journal of Mathematics, vol. 95, no. 2, pp. 293–305, 1981.
  • F. Nuray and B. E. Rhoades, “Statistical convergence of sequen-ces of sets,” Fasciculi Mathematici, no. 49, pp. 87–99, 2012.