Abstract and Applied Analysis

Some Intersections of the Weighted L p -Spaces

F. Abtahi, H. G. Amini, H. A. Lotfi, and A. Rejali

Full-text: Open access

Abstract

Let G be a locally compact group Ω an arbitrary family of the weight functions on G, and 1 p < . The locally convex space I L p ( G , Ω ) as a subspace of ω Ω L p ( G , ω ) is defined. Also, some sufficient conditions for that space to be a Banach space are provided. Furthermore, for an arbitrary subset J of [ 1 , ) and a positive submultiplicative weight function ω on G , Banach subspace I L J ( G , ω ) of p J L p ( G , ω ) is introduced. Then some algebraic properties of I L J ( G , ω ) , as a Banach algebra under convolution product, are investigated.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 986857, 12 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512085

Digital Object Identifier
doi:10.1155/2013/986857

Mathematical Reviews number (MathSciNet)
MR3121403

Zentralblatt MATH identifier
1313.43001

Citation

Abtahi, F.; Amini, H. G.; Lotfi, H. A.; Rejali, A. Some Intersections of the Weighted ${L}^{p}$ -Spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 986857, 12 pages. doi:10.1155/2013/986857. https://projecteuclid.org/euclid.aaa/1393512085


Export citation

References

  • E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, New York, NY, USA, 2nd edition, 1970.
  • F. Abtahi, R. Nasr-Isfahani, and A. Rejali, “On the ${L}^{p}$-conjecture for locally compact groups,” Archiv der Mathematik, vol. 89, no. 3, pp. 237–242, 2007.
  • F. Abtahi, R. N. Isfahani, and A. Rejali, “Convolution on weighted ${L}^{p}$-spaces of locally compact groups,” Proceedings of the Romanian Academy A, vol. 13, no. 2, pp. 97–102, 2012.
  • N. W. Rickert, “Convolution of ${L}^{p}$ functions,” Proceedings of the American Mathematical Society, vol. 18, pp. 762–763, 1967.
  • S. Saeki, “The ${L}^{p}$-conjecture and Young's inequality,” Illinois Journal of Mathematics, vol. 34, no. 3, pp. 614–627, 1990.
  • F. Abtahi, R. Nasr-Isfahani, and A. Rejali, “On the weighted ${l}^{p}$-space of a discrete group,” Publicationes Mathematicae Debrecen, vol. 75, no. 3-4, pp. 365–374, 2009.
  • F. Abtahi, R. Nasr-Isfahani, and A. Rejali, “Weighted ${L}^{p}$-conjecture for locally compact groups,” Periodica Mathematica Hungarica, vol. 60, no. 1, pp. 1–11, 2010.
  • F. Abtahi, “Weighted ${L}^{p}$-spaces on locally compact groups,” Bulletin of the Belgian Mathematical Society, vol. 19, no. 2, pp. 339–343, 2012.
  • A. El Kinani and A. Benazzouz, “Structure $m$-convexe dans l'espace à poids ${L}_{\Omega }^{p}({R}^{n})$,” Bulletin of the Belgian Mathematical Society, vol. 10, no. 1, pp. 49–57, 2003.
  • Yu. N. Kuznetsova, “Weighted ${L}_{p}$-algebras on groups,” Functional Analysis and Its Applications, vol. 40, no. 3, pp. 234–236, 2006.
  • Yu. N. Kuznetsova, “Invariant weighted algebras ${L}_{p}^{w}(G)$,” Mate-maticheskie Zametki, vol. 84, no. 4, pp. 567–576, 2008.
  • Yu. N. Kuznetsova, “Example of a weighted algebra \emphL$^{2}$(G, W) on an uncountable discrete group,” Journal of Mathematical Analysis and Applications, vol. 353, no. 2, pp. 660–665, 2009.
  • F. Abtahi, “Lebesgue weighted ${L}^{p}$-algebra on locally compact groups,” Acta Mathematica Hungarica, vol. 133, no. 4, pp. 324–331, 2011.
  • F. Ghahramani and A. T. M. Lau, “Weak amenability of certain classes of Banach algebras without bounded approximate identities,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 133, no. 2, pp. 357–371, 2002.
  • F. Ghahramani and A. T.-M. Lau, “Approximate weak amenability, derivations and Arens regularity of Segal algebras,” Studia Mathematica, vol. 169, no. 2, pp. 189–205, 2005.
  • A. Beurling, “Construction and analysis of some convolution algebras,” Annales de l'Institut Fourier, vol. 14, no. 2, pp. 1–32, 1964.
  • H. G. Feichtinger, “Gewichtete faltungsalgebren,” Tech. Rep., NuHAG, Vienna, Austria, 1974.
  • H. G. Feichtinger, “Some remarks on Banach convolution algebras of functions,” in Istituto Nazionale di Alta Matematica Symposia Mathematica, pp. 453–455, Academic Press, London, UK, 1977.
  • H. G. Feichtinger, “Gewichtsfunktionen auf lokalkompakten Gruppen,” Österreichische Akademie der Wissenschaften, vol. 188, no. 8–10, pp. 451–471, 1979.
  • H. G. Feichtinger, “Weighted ${L}^{p}$-spaces and the canonical mapping ${T}_{H}:{L}^{1}(G)\,\rightarrow\,{L}^{1}(G/H)$,” Unione Matematica Itali-ana, vol. 15, no. 3, pp. 989–999, 1979.
  • H. G. Feichtinger and A. T. Gürkanl\i, “On a family of weighted convolution algebras,” International Journal of Mathematics and Mathematical Sciences, vol. 13, no. 3, pp. 517–525, 1990.
  • W. Braun and H. G. Feichtinger, “Banach spaces of distributions having two module structures,” Journal of Functional Analysis, vol. 51, no. 2, pp. 174–212, 1983.
  • F. Abtahi, H. G. Amini, H. A. Lotfi, and A. Rejali, “An arbitrary intersection of ${L}_{p}$-spaces,” Bulletin of the Australian Mathematical Society, vol. 85, no. 3, pp. 433–445, 2012.
  • R. E. Edwards, “The stability of weighted Lebesgue spaces,” Transactions of the American Mathematical Society, vol. 93, pp. 369–394, 1959.
  • S. Grabiner, “Weighted convolution algebras as analogues of Banach algebras of power series,” in Radical Banach Algebras and Automatic Continuity, vol. 975, pp. 282–289, Springer, Berlin, Germany, 1983.
  • J. Wermer, “On a class of normed rings,” Arkiv för Matematik, vol. 2, pp. 537–551, 1954.
  • I. Akbarbaglu and S. Maghsoudi, “On the generalized weighted Lebesgue spaces of locally compact groups,” Abstract and Applied Analysis, Article ID 947908, 15 pages, 2011.
  • P. Tchamitchian, “Étude dans un cadre hilbertien des algèbres de Beurling munies d'un poids radial à croissance rapide,” Arkiv för Matematik, vol. 25, no. 2, pp. 295–312, 1987.
  • J. B. Conway, A Course in Functional Analysis, vol. 96, Springer, New York, NY, USA, 1985.
  • L. Grafakos, Classical Fourier Analysis, vol. 249, Springer, New York, NY, USA, 2nd edition, 2008.
  • S. G. Krein, I. J. Petunin, and E. M. Semenov, Interpolation of Linear Operators, American Mathematical Society (AMS), 1982.
  • W. Żelazko, “A note on \emphL$^{p}$-algebras,” Colloquium Mathemati-cum, vol. 10, pp. 49–52, 1963.
  • E. Hewitt and K. Stromberg, Real and Abstract Analysis, Spri-nger, New York, NY, USA, 1975.
  • H. Reiter, \emphL$^{1}$-algebras and Segal algebras, Springer, Berlin, Germany, 1971.
  • J. T. Burnham, “Closed ideals in subalgebras of Banach algebras. I,” Proceedings of the American Mathematical Society, vol. 32, pp. 551–555, 1972.
  • B. E. Johnson, Cohomology in Banach Algebras, American Mathematical Society, Providence, RI, USA, 1972.
  • M. C. White, “Characters on weighted amenable groups,” The Bulletin of the London Mathematical Society, vol. 23, no. 4, pp. 375–380, 1991.
  • J. Duncan and S. A. R. Hosseiniun, “The second dual of a Banach algebra,” Proceedings of the Royal Society of Edinburgh A, vol. 84, no. 3-4, pp. 309–325, 1979.
  • F. Ghahramani, R. J. Loy, and G. A. Willis, “Amenability and weak amenability of second conjugate Banach algebras,” Proceedings of the American Mathematical Society, vol. 124, no. 5, pp. 1489–1497, 1996.
  • F. Gourdeau, “Amenability and the second dual of a Banach algebra,” Studia Mathematica, vol. 125, no. 1, pp. 75–81, 1997.
  • A. Rejali and H. R. E. Vishki, “Regularity and amenability of the second dual of weighted group algebras,” Proyecciones, vol. 26, no. 3, pp. 259–267, 2007.