Abstract and Applied Analysis

Reduced-Order Antisynchronization of Chaotic Systems via Adaptive Sliding Mode Control

Wafaa Jawaada, M. S. M. Noorani, M. Mossa Al-Sawalha, and M. Abdul Majid

Full-text: Open access

Abstract

A novel reduced-order adaptive sliding mode controller is developed and experimented in this paper to antisynchronize two different chaotic systems with different order. Based upon the parameters modulation and the adaptive sliding mode control techniques, we show that dynamical evolution of third-order chaotic system can be antisynchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to two examples: firstly Lorenz (4th-order) and Lorenz (3rd-order) and secondly the hyperchaotic Lü (4th-order) and Chen (3rd-order). Theoretical analysis and numerical simulations are shown to verify the results.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 415652, 12 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512071

Digital Object Identifier
doi:10.1155/2013/415652

Mathematical Reviews number (MathSciNet)
MR3108665

Zentralblatt MATH identifier
1339.93035

Citation

Jawaada, Wafaa; Noorani, M. S. M.; Al-Sawalha, M. Mossa; Abdul Majid, M. Reduced-Order Antisynchronization of Chaotic Systems via Adaptive Sliding Mode Control. Abstr. Appl. Anal. 2013 (2013), Article ID 415652, 12 pages. doi:10.1155/2013/415652. https://projecteuclid.org/euclid.aaa/1393512071


Export citation

References

  • A. Alasty and R. Shabani, “Chaotic motions and fractal basin boundaries in spring-pendulum system,” Nonlinear Analysis: Real World Applications, vol. 7, no. 1, pp. 81–95, 2006.
  • M. Chen, D. Zhou, and Y. Shang, “A new observer-based synchronization scheme for private communication,” Chaos, Solitons & Fractals, vol. 24, no. 4, pp. 1025–1030, 2005.
  • O. Diallo and Y. Koné, “Melnikov analysis of chaos in a general epidemiological model,” Nonlinear Analysis: Real World Applications, vol. 8, no. 1, pp. 20–26, 2007.
  • M. Feki, “An adaptive chaos synchronization scheme applied to secure communication,” Chaos, Solitons & Fractals, vol. 18, no. 1, pp. 141–148, 2003.
  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990.
  • D. López-Mancilla and C. Cruz-Hernández, “Output synchronization of chaotic systems under nonvanishing perturbations,” Chaos, Solitons & Fractals, vol. 37, no. 4, pp. 1172–1186, 2008.
  • J.-J. Yan, Y.-S. Yang, T.-Y. Chiang, and C.-Y. Chen, “Robust synchronization of unified chaotic systems via sliding mode control,” Chaos, Solitons & Fractals, vol. 34, no. 3, pp. 947–954, 2007.
  • L. Huang, R. Feng, and M. Wang, “Synchronization of chaotic systems via nonlinear control,” Physics Letters A, vol. 320, no. 4, pp. 271–275, 2004.
  • Q. Zhang and J.-A. Lu, “Chaos synchronization of a new chaotic system via nonlinear control,” Chaos, Solitons & Fractals, vol. 37, no. 1, pp. 175–179, 2008.
  • M. T. Yassen, “On hyperchaos synchronization of a hyperchaotic Lü system,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 11, pp. 3592–3600, 2008.
  • E. Bai and K. Lonngen, “Synchronization of two Lorenz systems using active control,” Chaos, Solitons & Fractals, vol. 8, no. 1, pp. 51–58, 1997.
  • G.-H. Li and S.-P. Zhou, “Anti-synchronization in different chaotic systems,” Chaos, Solitons & Fractals, vol. 32, no. 2, pp. 516–520, 2007.
  • J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array of linearly stochastically coupled networks with time delays,” Physica A, vol. 385, no. 2, pp. 718–728, 2007.
  • S. Bowong, “Stability analysis for the synchronization of chaotic systems with different order: application to secure communications,” Physics Letters A, vol. 326, no. 1-2, pp. 102–113, 2004.
  • Q. Jia, “Hyperchaos generated from the Lorenz chaotic system and its control,” Physics Letters A, vol. 366, no. 3, pp. 217–222, 2007.
  • E. N. Lorenz, “Deterministic non-periodic flow,” Journal of the Atmospheric Sciences, vol. 20, no. 2, p. 130, 1963.
  • A. Chen, J. Lu, J. Lü, and S. Yu, “Generating hyperchaotic Lü attractor via state feedback control,” Physica A, vol. 364, pp. 103–110, 2006.
  • G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465–1466, 1999.