Abstract and Applied Analysis

On Growth of Meromorphic Solutions for Linear Difference Equations

Zong-Xuan Chen and Kwang Ho Shon

Full-text: Open access

Abstract

We mainly study growth of linear difference equations P n ( z ) f ( z + n ) + + P 1 ( z ) f ( z + 1 ) + P 0 ( z ) f ( z ) = 0 and P n ( z ) f ( z + n ) + + P 1 ( z ) f ( z + 1 ) + P 0 ( z ) f ( z ) = F ( z ) , where F ( z ) , P 0 ( z ) , , P n ( z ) are polynomials such that F ( z ) P 0 ( z ) P n ( z ) 0 and give the most weak condition to guarantee that orders of all transcendental meromorphic solutions of the above equations are greater than or equal to 1.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 619296, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512042

Digital Object Identifier
doi:10.1155/2013/619296

Mathematical Reviews number (MathSciNet)
MR3108414

Zentralblatt MATH identifier
07095174

Citation

Chen, Zong-Xuan; Shon, Kwang Ho. On Growth of Meromorphic Solutions for Linear Difference Equations. Abstr. Appl. Anal. 2013 (2013), Article ID 619296, 6 pages. doi:10.1155/2013/619296. https://projecteuclid.org/euclid.aaa/1393512042


Export citation

References

  • Z. Chen, “On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations,” Science China, vol. 54, no. 10, pp. 2123–2133, 2011.
  • Z.-X. Chen, “Growth and zeros of meromorphic solution of some linear difference equations,” Journal of Mathematical Analysis and Applications, vol. 373, no. 1, pp. 235–241, 2011.
  • Y.-M. Chiang and S.-J. Feng, “On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane,” Ramanujan Journal, vol. 16, no. 1, pp. 105–129, 2008.
  • K. Ishizaki, “On difference Riccati equations and second order linear difference equations,” Aequationes Mathematicae, vol. 81, no. 1-2, pp. 185–198, 2011.
  • K. Ishizaki and N. Yanagihara, “Wiman-Valiron method for difference equations,” Nagoya Mathematical Journal, vol. 175, pp. 75–102, 2004.
  • I. Laine and C.-C. Yang, “Clunie theorems for difference and $q$-difference polynomials,” Journal of the London Mathematical Society. Second Series, vol. 76, no. 3, pp. 556–566, 2007.
  • S. Li and Z.-S. Gao, “Finite order meromorphic solutions of linear difference equations,” Proceedings of the Japan Academy Series A, vol. 87, no. 5, pp. 73–76, 2011.
  • X.-M. Zheng and J. Tu, “Growth of meromorphic solutions of linear difference equations,” Journal of Mathematical Analysis and Applications, vol. 384, no. 2, pp. 349–356, 2011.
  • W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 1964.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, vol. 15 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, Germany, 1993.
  • W. K. Hayman, “Slowly growing integral and subharmonic functions,” Commentarii Mathematici Helvetici, vol. 34, pp. 75–84, 1960.
  • W. Bergweiler and J. K. Langley, “Zeros of differences of meromorphic functions,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 142, no. 1, pp. 133–147, 2007.
  • R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic derivative with applications to difference equations,” Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 477–487, 2006.