Abstract and Applied Analysis

Borel Directions and Uniqueness of Meromorphic Functions

Keyu Zhang, HongYan Xu, and Hongxun Yi

Full-text: Open access

Abstract

We investigate the relationship between Borel directions and uniqueness of meromorphic functions and obtain some results of meromorphic functions sharing four distinct values IM and one set in an angular domain containing a Borel line. Our result is an improvement of a recent theorem given by Long and Wu (2012).

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 793810, 8 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512008

Digital Object Identifier
doi:10.1155/2013/793810

Mathematical Reviews number (MathSciNet)
MR3093752

Zentralblatt MATH identifier
07095361

Citation

Zhang, Keyu; Xu, HongYan; Yi, Hongxun. Borel Directions and Uniqueness of Meromorphic Functions. Abstr. Appl. Anal. 2013 (2013), Article ID 793810, 8 pages. doi:10.1155/2013/793810. https://projecteuclid.org/euclid.aaa/1393512008


Export citation

References

  • W. K. Hayman, Meromorphic Functions, Oxford University Press, London, UK, 1964.
  • L. Yang, Value Distribution Theory, Springer/Science Press, Berlin, Germany, 1993.
  • W. C. Lin, S. Mori, and K. Tohge, “Uniqueness theorems in an angular domain,” The Tohoku Mathematical Journal, vol. 58, no. 4, pp. 509–527, 2006.
  • R. Nevanlinna, Le Théorème de Picard-Borel et la Théorie des Fonctions Méromorphes, Chelsea Publishing, New York, NY, USA, 1974, (Frensh).
  • H.-X. Yi and C.-C. Yang, Uniqueness Theory of Meromorphic Functions, vol. 557, Kluwer Academic, Dordrecht, The Netherlands, 2003, Chinese Original: Science Press, Beijing, China, 1995.
  • J.-H. Zheng, “On uniqueness of meromorphic functions with shared values in some angular domains,” Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques, vol. 47, no. 1, pp. 152–160, 2004.
  • J.-H. Zheng, “On uniqueness of meromorphic functions with shared values in one angular domain,” Complex Variables. Theory and Application, vol. 48, no. 9, pp. 777–785, 2003.
  • T.-B. Cao and H.-X. Yi, “On the uniqueness of meromorphic functions that share four values in one angular domain,” Journal of Mathematical Analysis and Applications, vol. 358, no. 1, pp. 81–97, 2009.
  • Z.-J. Wu, “On uniqueness of meromorphic functions in an angular domain,” Kodai Mathematical Journal, vol. 30, no. 3, pp. 352–360, 2007.
  • Z.-J. Wu and D.-C. Sun, “A remark on uniqueness theorems in an angular domain,” Japan Academy. Proceedings A, vol. 84, no. 6, pp. 73–77, 2008.
  • H.-Y. Xu and T.-B. Cao, “Uniqueness of two analytic functions sharing four values in an angular domain,” Annales Polonici Mathematici, vol. 99, no. 1, pp. 55–65, 2010.
  • H.-Y. Xu and T.-B. Cao, “Analytic functions in the unit disc sharing values in a sector,” Annales Polonici Mathematici, vol. 103, no. 3, pp. 263–275, 2012.
  • M. L. Cartwright, “On the directions of borel of functions which are regular and of finite order in an angle,” Proceedings of the London Mathematical Society, vol. S2–38, no. 1, pp. 503–541.
  • W. K. Hayman and S. J. Wu, “Value distribution theory and the research of Yang Lo,” Science in China B, vol. 53, no. 3, pp. 513–522, 2010.
  • C. N. Linden, “On a conjecture of Valiron concerning sets of indirect Borel points,” Journal of the London Mathematical Society, vol. 41, pp. 304–312, 1966.
  • G. Valiron, “Entire functions and Borel's directions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 20, no. 3, pp. 211–215, 1934.
  • S. J. Wu, “Further results on Borel removable sets of entire functions,” Annales Academiae Scientiarum Fennicae A, vol. 19, no. 1, pp. 67–81, 1994.
  • S. J. Wu, “The distribution of the Borel directions of entire functions,” Chinese Annals of Mathematics A, vol. 14, no. 4, pp. 400–406, 1993.
  • L. Yang, “Borel directions of meromorphic functions in an angular domain,” Scientia Sinica. Zhongguo Kexue, pp. 149–164, 1979.
  • L. Yang and G. H. Zhang, “Distribution of Borel directions of entire functions,” Acta Mathematica Sinica. Shuxue Xuebao, vol. 19, no. 3, pp. 157–168, 1976.
  • L. Yang and G. H. Zhang, “Progress in the value distribution theory of meromorphic functions,” Kexue Tongbao. Chinese Science Bulletin, vol. 22, no. 9, pp. 375–380, 1977.
  • L. Yang and K. H. Chang, “Sur la distribution des directions de Borel des fonctions méromorphes,” Scientia Sinica, vol. 16, pp. 465–482, 1973.
  • G. H. Zhang, “Common Borel directions of meromorphic functions and their successive derivatives or integrals. III,” Acta Mathematica Sinica. Shuxue Xuebao, vol. 20, no. 4, pp. 237–247, 1977.
  • Q. D. Zhang, “$T$ direction and Borel direction of meromorphic functions of finite and positive order,” Acta Mathematica Sinica. Chinese Series, vol. 50, no. 2, pp. 413–419, 2007.
  • C. T. Chuang, Singular Direction of Meromorpic Functions, Science Press, Beijing, China, 1982.
  • J. R. Long and P. C. Wu, “Borel directions and uniqueness of meromorphic functions,” Chinese Annals of Mathematics A, vol. 33, no. 3, pp. 261–266, 2012.
  • A. A. Goldberg and I. V. Ostrovskiĭ, The Distribution of Values of Meromorphic Function, Nauka, Moscow, 1970, (Russian).
  • A. A. Goldberg, “Nevanlinna's lemma on the logarithmic derivative of a meromorphic function,” Mathematical Notes, vol. 17, no. 4, pp. 310–312, 1975.
  • C. T. Chuang, “On Borel directions of meromorphic functions of infinite order. II,” Bulletin of the Hong Kong Mathematical Society, vol. 2, no. 2, pp. 305–323, 1999.