Abstract and Applied Analysis

Necessary Conditions for Existence Results of Some Integral System

Yongxia Hua and Xiaohui Yu

Full-text: Open access

Abstract

In this paper, we give some necessary conditions for the existence of positive solutions for integral systems.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 504282, 5 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393512004

Digital Object Identifier
doi:10.1155/2013/504282

Mathematical Reviews number (MathSciNet)
MR3091220

Zentralblatt MATH identifier
1294.45006

Citation

Hua, Yongxia; Yu, Xiaohui. Necessary Conditions for Existence Results of Some Integral System. Abstr. Appl. Anal. 2013 (2013), Article ID 504282, 5 pages. doi:10.1155/2013/504282. https://projecteuclid.org/euclid.aaa/1393512004


Export citation

References

  • E. H. Lieb, “Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,” Annals of Mathematics. Second Series, vol. 118, no. 2, pp. 349–374, 1983.
  • W. Chen, C. Li, and B. Ou, “Classification of solutions for an integral equation,” Communications on Pure and Applied Mathematics, vol. 59, no. 3, pp. 330–343, 2006.
  • W. Chen, C. Li, and B. Ou, “Classification of solutions for a system of integral equations,” Communications in Partial Differential Equations, vol. 30, no. 1–3, pp. 59–65, 2005.
  • Y. Y. Li, “Remark on some conformally invariant integral equations: the method of moving spheres,” Journal of the European Mathematical Society, vol. 6, no. 2, pp. 153–180, 2004.
  • X. Yu, “Liouville type theorems for integral equations and integral systems,” Calculus of Variations and Partial Differential Equations, vol. 46, no. 1-2, pp. 75–95, 2013.
  • X. Yu, “Liouville type theorems for singular integral equations and integral systems,” Calculus of Variations and Partial Differential Equations, vol. 46, no. 1-2, pp. 75–95, 2013.
  • W. Chen and C. Li, “An integral system and the Lane-Emden conjecture,” Discrete and Continuous Dynamical Systems. Series A, vol. 24, no. 4, pp. 1167–1184, 2009.
  • W. Chen and C. Li, “Classification of positive solutions for nonlinear differential and integral systems with critical exponents,” Acta Mathematica Scientia. Series B. English Edition, vol. 29, no. 4, pp. 949–960, 2009.
  • W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, vol. 4 of AIMS Series on Differential Equations & Dynamical Systems, American Institute of Mathematical Sciences, Springfield, Mo, USA, 2010.
  • W. Chen and C. Li, “Radial symmetry of solutions for some integral systems of Wolff type,” Discrete and Continuous Dynamical Systems. Series A, vol. 30, no. 4, pp. 1083–1093, 2011.
  • F. Hang, X. Wang, and X. Yan, “An integral equation in conformal geometry,” Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, vol. 26, no. 1, pp. 1–21, 2009.
  • C. Jin and C. Li, “Symmetry of solutions to some systems of integral equations,” Proceedings of the American Mathematical Society, vol. 134, no. 6, pp. 1661–1670, 2006.
  • L. Ma and D. Chen, “A Liouville type theorem for an integral system,” Communications on Pure and Applied Analysis, vol. 5, no. 4, pp. 855–859, 2006.
  • L. Ma and D. Chen, “Radial symmetry and monotonicity for an integral equation,” Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 943–949, 2008.
  • L. Ma and D. Chen, “Radial symmetry and uniqueness for positive solutions of a Schrödinger type system,” Mathematical and Computer Modelling, vol. 49, no. 1-2, pp. 379–385, 2009.
  • C. Ma, W. Chen, and C. Li, “Regularity of solutions for an integral system of Wolff type,” Advances in Mathematics, vol. 226, no. 3, pp. 2676–2699, 2011.
  • X. Xu, “Exact solutions of nonlinear conformally invariant integral equations in ${R}^{3}$,” Advances in Mathematics, vol. 194, no. 2, pp. 485–503, 2005.
  • X. Xu, “Uniqueness and non-existence theorems for conformally invariant equations,” Journal of Functional Analysis, vol. 222, no. 1, pp. 1–28, 2005.
  • X. Xu, “Uniqueness theorem for integral equations and its application,” Journal of Functional Analysis, vol. 247, no. 1, pp. 95–109, 2007.
  • W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, vol. 120 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1989.