Abstract and Applied Analysis

On the Existence of the Solutions for Some Nonlinear Volterra Integral Equations

İsmet Özdemir, Ümit Çakan, and Bekir İlhan

Full-text: Open access

Abstract

We present a theorem which gives sufficient conditions for existence of at least one solution for some nonlinear functional integral equations in the space of continuous functions on the interval [ 0 , a ] . To do this, we will use Darbo's fixed-point theorem associated with the measure of noncompactness. We give also an example satisfying the conditions of our main theorem but not satisfying the conditions described by Maleknejad et al. (2009).

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 698234, 5 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511949

Digital Object Identifier
doi:10.1155/2013/698234

Mathematical Reviews number (MathSciNet)
MR3070197

Zentralblatt MATH identifier
07095250

Citation

Özdemir, İsmet; Çakan, Ümit; İlhan, Bekir. On the Existence of the Solutions for Some Nonlinear Volterra Integral Equations. Abstr. Appl. Anal. 2013 (2013), Article ID 698234, 5 pages. doi:10.1155/2013/698234. https://projecteuclid.org/euclid.aaa/1393511949


Export citation

References

  • V. Mureşan, “On some functional-integral equations with linear modification of the argument,” Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, pp. 297–303, 2002.
  • J. Banaś and K. Sadarangani, “Solutions of some functional-integral equations in Banach algebra,” Mathematical and Computer Modelling, vol. 38, no. 3-4, pp. 245–250, 2003.
  • S. Djebali and K. Hammache, “Fixed point theorems for nonexpansive maps in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 10, pp. 3440–3449, 2010.
  • K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.
  • K. Maleknejad, K. Nouri, and R. Mollapourasl, “Investigation on the existence of solutions for some nonlinear functional-integral equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. e1575–e1578, 2009.
  • J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, vol. 60 of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.