Abstract and Applied Analysis

An Extension of Modular Sequence Spaces

Hemen Dutta and Iqbal H. Jebril

Full-text: Open access


The main aim of this paper is to present an extension of the modular sequence spaces by means of Cesàro mean of order one, to investigate several relevant algebraic and topological properties, and derive some other spaces in the sequel.

Article information

Abstr. Appl. Anal., Volume 2013 (2013), Article ID 371806, 7 pages.

First available in Project Euclid: 27 February 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Dutta, Hemen; Jebril, Iqbal H. An Extension of Modular Sequence Spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 371806, 7 pages. doi:10.1155/2013/371806. https://projecteuclid.org/euclid.aaa/1393511948

Export citation


  • H. Nakano, “Concave modulars,” Journal of the Mathematical Society of Japan, vol. 5, pp. 29–49, 1953.
  • J. Lindenstrauss and L. Tzafriri, “On orlicz sequence spaces,” Israel Journal of Mathematics, vol. 10, no. 3, pp. 379–390, 1971.
  • J. Y. T. Woo, “On modular sequence spaces,” Studia Mathematica, vol. 48, pp. 271–289, 1973.
  • H. Nakano, “Modulared sequence spaces,” Proceedings of the Japan Academy, vol. 27, pp. 508–512, 1951.
  • M. A. Krasnoselskii and Y. B. Rutitsky, Convex Functions and Orlicz Spaces, Groningen, The Netherlands, 1961.
  • Ç. A. Bektaş and Y. Altin, “The sequence space ${\ell }_{M}(p,q,s)$ on seminormed spaces,” Indian Journal of Pure and Applied Mathematics, vol. 34, no. 4, pp. 529–534, 2003.
  • S. D. Parasar and B. Choudhary, “Sequence spaces defined by Orlicz functions,” Indian Journal of Pure and Applied Mathematics, vol. 25, no. 4, pp. 419–428, 1994.
  • M. Mursaleen, A. Khan, and Qamaruddin, “Difference sequence spaces defined by Orlicz functions,” Demonstratio Mathematica, vol. 1, pp. 145–150, 1999.
  • H. Dutta and F. Başar, “A generalization of Orlicz sequence spaces by Cesàro mean of order one,” Acta Mathematica Universitatis Comenianae, vol. 80, no. 2, pp. 185–200, 2011.
  • H. Dutta and T. Bilgin, “Strongly ($({V}^{\lambda },A,{\Delta }_{({\lightv}m)}^{n},p)$)-summable sequence spaces defined by an Orlicz function,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1057–1062, 2011.
  • V. Karakaya and H. Dutta, “On some vector valued generalized difference modular sequence spaces,” Filomat, vol. 25, no. 3, pp. 15–27, 2011.
  • B. C. Tripathy and H. Dutta, “Some difference paranormed sequence spaces defined by Orlicz functions,” Fasciculi Mathematici, vol. 42, pp. 121–131, 2009.
  • I. H. Jebril, “A generalization of strongly Cesàro and strongly lacunary summable spaces,” Acta Universitatis Apulensis, vol. 23, pp. 49–61, 2010.
  • K. Zeller, Theorie Der Limitierungsverfahren, Berlin, Germany, 1958.