Abstract and Applied Analysis

Cone Monotonicity: Structure Theorem, Properties, and Comparisons to Other Notions of Monotonicity

Heather A. Van Dyke, Kevin R. Vixie, and Thomas J. Asaki

Full-text: Open access

Abstract

In search of a meaningful 2-dimensional analog to monotonicity, we introduce two new definitions and give examples of and discuss the relationship between these definitions and others that we found in the literature.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 134751, 8 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511942

Digital Object Identifier
doi:10.1155/2013/134751

Mathematical Reviews number (MathSciNet)
MR3067403

Zentralblatt MATH identifier
1301.26017

Citation

Van Dyke, Heather A.; Vixie, Kevin R.; Asaki, Thomas J. Cone Monotonicity: Structure Theorem, Properties, and Comparisons to Other Notions of Monotonicity. Abstr. Appl. Anal. 2013 (2013), Article ID 134751, 8 pages. doi:10.1155/2013/134751. https://projecteuclid.org/euclid.aaa/1393511942


Export citation

References

  • H. Lebesgue, “Sur le problème de Dirichlet,” Rendiconti del Circolo Matematico di Palermo, vol. 27, pp. 371–402, 1907.
  • G. D. Mostow, “Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms,” Institut des Hautes Études Scientifiques. Publications Mathématiques, no. 34, pp. 53–104, 1968.
  • S. K. Vodopyanov and V. M. Goldstein, “Quasiconformal mappings and spaces of functions with generalized first derivatives,” Siberian Mathematical Journal, vol. 17, pp. 399–411, 1976.
  • J. J. Manfredi, “Weakly monotone functions,” The Journal of Geometric Analysis, vol. 4, no. 3, pp. 393–402, 1994.
  • S. G. Krantz and H. R. Parks, Geometric Integration Theory, Birkhäuser Boston Inc., Boston, Mass, USA, 2008.
  • L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1992.