Abstract and Applied Analysis

Properties of a Class of p -Harmonic Functions

Elif Yaşar and Sibel Yalçın

Full-text: Open access

Abstract

A p times continuously differentiable complex-valued function F = u + i v in a domain D is p -harmonic if F satisfies the p -harmonic equation Δ Δ F = 0 , where p is a positive integer. By using the generalized Salagean differential operator, we introduce a class of p -harmonic functions and investigate necessary and sufficient coefficient conditions, distortion bounds, extreme points, and convex combination of the class.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 968627, 8 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511930

Digital Object Identifier
doi:10.1155/2013/968627

Mathematical Reviews number (MathSciNet)
MR3065769

Zentralblatt MATH identifier
07095544

Citation

Yaşar, Elif; Yalçın, Sibel. Properties of a Class of $p$ -Harmonic Functions. Abstr. Appl. Anal. 2013 (2013), Article ID 968627, 8 pages. doi:10.1155/2013/968627. https://projecteuclid.org/euclid.aaa/1393511930


Export citation

References

  • J. Clunie and T. Sheil-Small, “Harmonic univalent functions,” Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, vol. 9, pp. 3–25, 1984.
  • P. Duren, Harmonic Mappings in the Plane, vol. 156 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2004.
  • Y. Avc\i and E. Złotkiewicz, “On harmonic univalent mappings,” Annales Universitatis Mariae Curie-Skłodowska. Sectio A, vol. 44, pp. 1–7, 1990.
  • J. M. Jahangiri, “Harmonic functions starlike in the unit disk,” Journal of Mathematical Analysis and Applications, vol. 235, no. 2, pp. 470–477, 1999.
  • H. Silverman, “Harmonic univalent functions with negative coefficients,” Journal of Mathematical Analysis and Applications, vol. 220, no. 1, pp. 283–289, 1998.
  • H. Silverman and E. M. Silvia, “Subclasses of harmonic univalent functions,” New Zealand Journal of Mathematics, vol. 28, no. 2, pp. 275–284, 1999.
  • Z. Abdulhadi, Y. A. Muhanna, and S. Khuri, “On univalent solutions of the biharmonic equation,” Journal of Inequalities and Applications, vol. 2005, no. 5, pp. 469–478, 2005.
  • Z. AbdulHadi, Y. A. Muhanna, and S. Khuri, “On some properties of solutions of the biharmonic equation,” Applied Mathematics and Computation, vol. 177, no. 1, pp. 346–351, 2006.
  • Z. Abdulhadi and Y. Abu Muhanna, “Landau's theorem for biharmonic mappings,” Journal of Mathematical Analysis and Applications, vol. 338, no. 1, pp. 705–709, 2008.
  • J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Springer, New York, NY, USA, 1965.
  • S. A. Khuri, “Biorthogonal series solution of Stokes flow problems in sectorial regions,” SIAM Journal on Applied Mathematics, vol. 56, no. 1, pp. 19–39, 1996.
  • G. S. Sălăgean, “Subclasses of univalent functions,” in Complex Analysis–-Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), vol. 1013 of Lecture Notes in Math, pp. 362–372, Springer, Berlin, Germany, 1983.
  • F. M. Al-Oboudi, “On univalent functions defined by a generalized Sǎlǎgean operator,” International Journal of Mathematics and Mathematical Sciences, vol. 2004, no. 27, pp. 1429–1436, 2004.
  • S. Li and P. Liu, “A new class of harmonic univalent functions by the generalized Salagean operator,” Wuhan University Journal of Natural Sciences, vol. 12, no. 6, pp. 965–970, 2007.