Abstract and Applied Analysis

On the Geometry of the Movements of Particles in a Hamilton Space

A. Ceylan Coken and Ismet Ayhan

Full-text: Open access

Abstract

We studied on the differential geometry of the Hamilton space including trajectories of the motion of particles exposed to gravitational fields and the cotangent bundle.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 830147, 7 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511904

Digital Object Identifier
doi:10.1155/2013/830147

Mathematical Reviews number (MathSciNet)
MR3064235

Zentralblatt MATH identifier
1275.53017

Citation

Coken, A. Ceylan; Ayhan, Ismet. On the Geometry of the Movements of Particles in a Hamilton Space. Abstr. Appl. Anal. 2013 (2013), Article ID 830147, 7 pages. doi:10.1155/2013/830147. https://projecteuclid.org/euclid.aaa/1393511904


Export citation

References

  • R. Miron, The Geometry of Higher-Order Hamilton Spaces Applications to Hamiltonian Mechanics, Kluwer Academic, Dordrecht, The Netherlands, 2003.
  • V. Oproiu and N. Papaghiuc, “A pseudo-Riemannian structure on the cotangent bundle,” Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică, vol. 36, no. 3, pp. 265–276, 1990.
  • T. Willmore, “Riemann extensions and affine differential geometry,” Results in Mathematics, vol. 13, no. 3-4, pp. 403–408, 1988.
  • K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, New York, NY, USA, 1973.
  • S. Akbulut, M. Özdemir, and A. A. Salimov, “Diagonal lift in the cotangent bundle and its applications,” Turkish Journal of Mathematics, vol. 25, no. 4, pp. 491–502, 2001.
  • V. Oproiu, “A pseudo-Riemannian structure in Lagrange geometry,” Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Secţiunea I, vol. 33, no. 3, pp. 239–254, 1987.
  • I. Ayhan, “Lifts from a Lagrange manifold to its contangent bundle,” Algebras, Groups and Geometries, vol. 27, no. 2, pp. 229–246, 2010.
  • I. Ayhan, “L-dual lifted tensor fields between the tangent and cotangent bundles of a Lagrange manifold,” International Journal of Physical and Mathematical Sciences, vol. 4, no. 1, pp. 86–93, 2013.
  • A. Polnarev, Relativity and Gravitation, vol. 5 of Lecture Notes, 2010.
  • R. Miron, H. Hrimiuc, H. Shimada, and V. S. Sabau, The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic, New York, NY, USA, 2001.
  • V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, Germany, 1989.
  • R. Abraham and J. E. Marsden, Foundations of Mechanics, W. A. Benjamin, New York, NY, USA, 1967.