Abstract and Applied Analysis

Some Properties of Meromorphic Solutions of Systems of Complex q-Shift Difference Equations

Hong-Yan Xu, Bing-Xiang Liu, and Ke-Zong Tang

Full-text: Open access

Abstract

In view of Nevanlinna theory, we study the properties of meromorphic solutions of systems of a class of complex difference equations. Some results obtained improve and extend the previous theorems given by Gao.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 680956, 6 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511848

Digital Object Identifier
doi:10.1155/2013/680956

Mathematical Reviews number (MathSciNet)
MR3045037

Zentralblatt MATH identifier
1272.30048

Citation

Xu, Hong-Yan; Liu, Bing-Xiang; Tang, Ke-Zong. Some Properties of Meromorphic Solutions of Systems of Complex q -Shift Difference Equations. Abstr. Appl. Anal. 2013 (2013), Article ID 680956, 6 pages. doi:10.1155/2013/680956. https://projecteuclid.org/euclid.aaa/1393511848


Export citation

References

  • W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 1964.
  • L. Yang, Value Distribution Theory, Springer, Berlin, Germany, 1993.
  • C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, vol. 557 of Mathematics and its Applications, Kluwer Academic, Dordrecht, The Netherlands, 2003.
  • M. J. Ablowitz, R. Halburd, and B. Herbst, “On the extension of the Painlevé property to difference equations,” Nonlinearity, vol. 13, no. 3, pp. 889–905, 2000.
  • D. C. Barnett, R. G. Halburd, W. Morgan, and R. J. Korhonen, “Nevanlinna theory for the $q$-difference operator and meromorphic solutions of $q$-difference equations,” Proceedings of the Royal Society of Edinburgh A, vol. 137, no. 3, pp. 457–474, 2007.
  • G. G. Gundersen, J. Heittokangas, I. Laine, J. Rieppo, and D. Yang, “Meromorphic solutions of generalized Schröder equations,” Aequationes Mathematicae, vol. 63, no. 1-2, pp. 110–135, 2002.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and K. Tohge, “Complex difference equations of Malmquist type,” Computational Methods and Function Theory, vol. 1, no. 1, pp. 27–39, 2001.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. Zhang, “Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity,” Journal of Mathematical Analysis and Applications, vol. 355, no. 1, pp. 352–363, 2009.
  • J. Zhang and R. Korhonen, “On the Nevanlinna characteristic of $f(qz)$ and its applications,” Journal of Mathematical Analysis and Applications, vol. 369, no. 2, pp. 537–544, 2010.
  • Y.-M. Chiang and S.-J. Feng, “On the Nevanlinna characteristic of $f(z+\eta )$ and difference equations in the complex plane,” Ramanujan Journal, vol. 16, no. 1, pp. 105–129, 2008.
  • R. G. Halburd and R. J. Korhonen, “Difference analogue of the lemma on the logarithmic derivative with applications to difference equations,” Journal of Mathematical Analysis and Applications, vol. 314, no. 2, pp. 477–487, 2006.
  • W. Bergweiler, K. Ishizaki, and N. Yanagihara, “Growth of meromorphic solutions of some functional equations. I,” Aequationes Mathematicae, vol. 63, no. 1-2, pp. 140–151, 2002.
  • Z.-X. Chen, “Growth and zeros of meromorphic solution of some linear difference equations,” Journal of Mathematical Analysis and Applications, vol. 373, no. 1, pp. 235–241, 2011.
  • R. G. Halburd and R. J. Korhonen, “Finite-order meromorphic solutions and the discrete Painlevé equations,” Proceedings of the London Mathematical Society, vol. 94, no. 2, pp. 443–474, 2007.
  • R. G. Halburd and R. J. Korhonen, “Nevanlinna theory for the difference operator,” Annales Academiæ Scientiarum Fennicæ, vol. 31, no. 2, pp. 463–478, 2006.
  • I. Laine, J. Rieppo, and H. Silvennoinen, “Remarks on complex difference equations,” Computational Methods and Function Theory, vol. 5, no. 1, pp. 77–88, 2005.
  • H. Silvennoinen, Meromorphic Solutions of Some Composite Functional Equations, vol. 132 of Annales Academiae Scientiarum Fennicae, Mathematica, Dissertationes, Helsinki, 2003.
  • J. Wang, “Growth and poles of meromorphic solutions of some difference equations,” Journal of Mathematical Analysis and Applications, vol. 379, no. 1, pp. 367–377, 2011.
  • X.-M. Zheng and Z.-X. Chen, “Some properties of meromorphic solutions of $q$-difference equations,” Journal of Mathematical Analysis and Applications, vol. 361, no. 2, pp. 472–480, 2010.
  • R. Korhonen, “A new Clunie type theorem for difference polynomials,” Journal of Difference Equations and Applications, vol. 17, no. 3, pp. 387–400, 2011.
  • X. M. Zheng and Z. X. Chen, “Value distribution of meromorphic solutions of some $q$-difference equations,” Journal of Mathematical Research and Exposition, vol. 31, no. 4, pp. 698–704, 2011.
  • L. Gao, “On meromorphic solutions of a type of system of composite functional equations,” Acta Mathematica Scientia B, vol. 32, no. 2, pp. 800–806, 2012.
  • L. Y. Gao, “Systems of complex difference equations of Malmquist type,” Acta Mathematica Sinica, vol. 55, no. 2, pp. 293–300, 2012.
  • L. Gao, “Estimates of $N$-function and $m$-function of meromorphic solutions of systems of complex difference equations,” Acta Mathematica Scientia B, vol. 32, no. 4, pp. 1495–1502, 2012.
  • H. Wang, H. Y. Xu, and B. X. Liu, “The poles and growth of solutions of systems of complex difference equations,” Advances in Difference Equations, vol. 2013, article 75, 2013.
  • H.-Y. Xu, T.-B. Cao, and B.-X. Liu, “The growth of solutions of systems of complex q-shift difference equations,” Advances in Difference Equations, vol. 2012, article 216, 2012.
  • K. Liu and X.-G. Qi, “Meromorphic solutions of $q$-shift difference equations,” Annales Polonici Mathematici, vol. 101, no. 3, pp. 215–225, 2011.
  • I. Laine, Nevanlinna Theory and Complex Differential Equations, vol. 15 of de Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, Germany, 1993.
  • H. Y. Xu and J. Tu, “Some properties of meromorphic solutions of $q$-shift difference equations,” Journal of Mathematical Study, vol. 45, no. 2, pp. 124–132, 2012.