Abstract and Applied Analysis

Semi Implicit Hybrid Methods with Higher Order Dispersion for Solving Oscillatory Problems

S. Z. Ahmad, F. Ismail, N. Senu, and M. Suleiman

Full-text: Open access

Abstract

We constructed three two-step semi-implicit hybrid methods (SIHMs) for solving oscillatory second order ordinary differential equations (ODEs). The first two methods are three-stage fourth-order and three-stage fifth-order with dispersion order six and zero dissipation. The third is a four-stage fifth-order method with dispersion order eight and dissipation order five. Numerical results show that SIHMs are more accurate as compared to the existing hybrid methods, Runge-Kutta Nyström (RKN) and Runge-Kutta (RK) methods of the same order and Diagonally Implicit Runge-Kutta Nyström (DIRKN) method of the same stage. The intervals of absolute stability or periodicity of SIHM for ODE are also presented.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 136961, 10 pages.

Dates
First available in Project Euclid: 27 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393511825

Digital Object Identifier
doi:10.1155/2013/136961

Mathematical Reviews number (MathSciNet)
MR3039174

Zentralblatt MATH identifier
1275.65042

Citation

Ahmad, S. Z.; Ismail, F.; Senu, N.; Suleiman, M. Semi Implicit Hybrid Methods with Higher Order Dispersion for Solving Oscillatory Problems. Abstr. Appl. Anal. 2013 (2013), Article ID 136961, 10 pages. doi:10.1155/2013/136961. https://projecteuclid.org/euclid.aaa/1393511825


Export citation

References

  • J. M. Franco, “An explicit hybrid method of Numerov type for second-order periodic initial-value problems,” Journal of Computational and Applied Mathematics, vol. 59, no. 1, pp. 79–90, 1995.
  • L. K. Yap, F. Ismail, M. Suleiman, and S. Md. Amin, “Block methods based on Newton interpolations for solving special second order ordinary differential equations directly,” Journal of Mathematics and Statistics, vol. 4, no. 3, pp. 174–180, 2008.
  • J. M. Franco, “A class of explicit two-step hybrid methods for second-order IVPs,” Journal of Computational and Applied Mathematics, vol. 187, no. 1, pp. 41–57, 2006.
  • J. P. Coleman, “Order conditions for a class of two-step methods for ${y}^{{''}}=f(x,y)$,” IMA Journal of Numerical Analysis, vol. 23, no. 2, pp. 197–220, 2003.
  • J. D. Lambert and I. A. Watson, “Symmetric multistep methods for periodic initial value problems,” Journal of the Institute of Mathematics and Its Applications, vol. 18, no. 2, pp. 189–202, 1976.
  • H. Van de Vyver, “A symplectic Runge-Kutta-Nyström method with minimal phase-lag,” Physics Letters A, vol. 367, no. 1-2, pp. 16–24, 2007.
  • N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A singly diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems,” IAENG International Journal of Applied Mathematics, vol. 41, no. 2, pp. 155–161, 2011.
  • L. Brusa and L. Nigro, “A one-step method for direct integration of structural dynamic equations,” International Journal for Numerical Methods in Engineering, vol. 15, no. 5, pp. 685–699, 1980.
  • P. J. van der Houwen and B. P. Sommeijer, “Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions,” SIAM Journal on Numerical Analysis, vol. 24, no. 3, pp. 595–617, 1987.
  • N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A fourth-order diagonally implicit Runge-Kutta- Nyström method with dispersion of high order,” in Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling (ASM '10), pp. 78–82, July 2010.
  • A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems,” Computers & Mathematics with Applications, vol. 61, no. 11, pp. 3381–3390, 2011.
  • A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems,” Computer Physics Communications, vol. 183, no. 3, pp. 470–479, 2012.
  • B. P. Sommeijer, “A note on a diagonally implicit Runge-Kutta-Nyström method,” Journal of Computational and Applied Mathematics, vol. 19, no. 3, pp. 395–399, 1987.
  • J. R. Dormand, Numerical Methods for Differential Equations, Library of Engineering Mathematics, CRC Press, Boca Raton, Fla, USA, 1996.
  • E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations 1, Springer, Berlin, Germany, 2010.
  • J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Chichester, UK, 2nd edition, 2008.
  • M. M. Chawla and P. S. Rao, “High-accuracy $P$-stable methods for ${y}^{{''}}=f(x,y)$,” IMA Journal of Numerical Analysis, vol. 5, no. 2, pp. 215–220, 1985.
  • B. S. Attili, K. Furati, and M. I. Syam, “An efficient implicit Runge-Kutta method for second order systems,” Applied Mathematics and Computation, vol. 178, no. 2, pp. 229–238, 2006.
  • E. Stiefel and D. G. Bettis, “Stabilization of Cowell's method,” Numerische Mathematik, vol. 13, pp. 154–175, 1969.
  • R. C. Allen, Jr. and G. M. Wing, “An invariant imbedding algorithm for the solution of inhomogeneous linear two-point boundary value problems,” Journal of Computational Physics, vol. 14, pp. 40–58, 1974.
  • D. F. Papadopoulos, Z. A. Anastassi, and T. E. Simos, “A phase-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solutions,” Computer Physics Communications, vol. 180, no. 10, pp. 1839–1846, 2009.
  • P. J. van der Houwen and B. P. Sommeijer, “Diagonally implicit Runge-Kutta-Nyström methods for oscillatory problems,” SIAM Journal on Numerical Analysis, vol. 26, no. 2, pp. 414–429, 1989.