Abstract and Applied Analysis

A Stackelberg-Game-Based Power Control Algorithm for Wireless Mesh Networks

Yanbing Liu, Tao Wu, Jun Huang, and Shousheng Jia

Full-text: Open access

Abstract

Wireless mesh networks (WMNs) are a promising networking paradigm for next generation wireless networking system. Power control plays a vital role in WMNs and is realized to be a crucial step toward large-scale WMNs deployment. In this paper, we address the problem of how to allocate the power for both optimizing quality of service (QoS) and saving the power consumption in WMNs based on the game theory. We first formulate the problem as a noncooperative game, in which the QoS attributes and the power of each node are defined as a utility function, and all the nodes attempt to maximize their own utility. In such game, we correlate all the interfering nodes to be an interfering object and the receiving node to be the interfering object's virtual destination node. We then present an equilibrium solution for the noncooperative game using Stackelberg model, and we propose an iterative, distributed power control algorithm for WMNs. Also, we conduct numeric experiments to evaluate the system performance, our results show that the proposed algorithm can balance nodes to share the limited network resources and maximize total utility, and thus it is efficient and effective for solving the power control problem in WMNs.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2012), Article ID 832309, 10 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393450529

Digital Object Identifier
doi:10.1155/2013/832309

Mathematical Reviews number (MathSciNet)
MR3035276

Zentralblatt MATH identifier
1272.68043

Citation

Liu, Yanbing; Wu, Tao; Huang, Jun; Jia, Shousheng. A Stackelberg-Game-Based Power Control Algorithm for Wireless Mesh Networks. Abstr. Appl. Anal. 2013, Special Issue (2012), Article ID 832309, 10 pages. doi:10.1155/2013/832309. https://projecteuclid.org/euclid.aaa/1393450529


Export citation

References

  • A. B. MacKenzie and S. B. Wicker, “Game theory and the design of self-configuring, adaptive wireless networks,” IEEE Communications Magazine, vol. 39, no. 11, pp. 126–131, 2001.
  • A. Muqattash and M. Krunz, “POWMAC: a single-channel power-control protocol for throughput enhancement in wireless ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 5, pp. 1067–1084, 2005.
  • J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference compensation for wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 5, pp. 1074–1084, 2006.
  • F. O. Aron, T. O. Olwal, A. Kurien et al., “A distributed topology control algorithm to conserve energy in heterogeneous wireless Mesh networks,” Proceedings of World Academy of Science, Engineering and Technology, vol. 30, pp. 530–536, 2008.
  • C. K. Tan, M. L. Sim, and T. C. Chuah, “Game theoretic approach for channel assignment and power control with no-internal-regret learning in wireless ad hoc networks,” IET Communications, vol. 2, no. 9, pp. 1159–1169, 2008.
  • C. K. Tan, M. L. Sim, and T. C. Chuah, “Fair power control for wireless ad hoc networks using game theory with pricing scheme,” IET Communications, vol. 4, no. 3, pp. 322–333, 2010.
  • E. A. Panaousis, C. Politis, and G. C. Polyzos, “Maximizing network throughput,” IEEE Vehicular Technology Magazine, vol. 4, no. 3, pp. 33–39, 2009.
  • F. Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource allocation in wireless networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 58–68, 2007.
  • F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A game-theoretic approach to energy-efficient power control in multicarrier CDMA Systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 6, pp. 1115–1129, 2006.
  • V. Nagarajan and P. Dananjayan, “A novel game theoretic approach for energy efficient modulation in MC-DS-CDMA,” in Proceedings of the International Conference on Future Computer and Communication (ICFCC'09), pp. 112–116, Kuala Lumpur, Malaysia, April 2009.
  • X. M. Zhang, Q. Liu, S. F. Dai, and Y. Z. Liu, “Traffic load-based interference-aware routing protocol for mobile ad hoc networks,” Journal of Software, vol. 20, no. 10, pp. 2721–2728, 2009.
  • S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 736–748, 2003.
  • G. Debreu, “A social equilibrium existence theorem,” Proceedings of the National Academy of Sciences of the United States of America, vol. 38, pp. 886–893, 1952.
  • S. Koskie and Z. Gajic, “A Nash game algorithm for SIR-based power control in 3G wireless CDMA networks,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1017–1026, 2005.
  • J. P. Monks, V. Bharghavan, and W. W. Hwu, “A power controlled multiple access protocol for wireless packet networks,” in Proceedings of the 20th Annual Joint Conference on the IEEE Computer and Communications Societies (IEEE INFOCOM'01), vol. 1, pp. 219–228, Anchorage, Alaska, USA, April 2001.