## Abstract and Applied Analysis

- Abstr. Appl. Anal.
- Volume 2013, Special Issue (2013), Article ID 172654, 8 pages.

### Nonstationary Fronts in the Singularly Perturbed Power-Society Model

M. G. Dmitriev, A. A. Pavlov, and A. P. Petrov

#### Abstract

The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the equation are presented in terms of applied model. The possibility theorem for the problem of getting the solution having some preassigned properties by means of parametric control is proved.

#### Article information

**Source**

Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 172654, 8 pages.

**Dates**

First available in Project Euclid: 26 February 2014

**Permanent link to this document**

https://projecteuclid.org/euclid.aaa/1393450132

**Digital Object Identifier**

doi:10.1155/2013/172654

**Mathematical Reviews number (MathSciNet)**

MR3121508

**Zentralblatt MATH identifier**

1304.35049

#### Citation

Dmitriev, M. G.; Pavlov, A. A.; Petrov, A. P. Nonstationary Fronts in the Singularly Perturbed Power-Society Model. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 172654, 8 pages. doi:10.1155/2013/172654. https://projecteuclid.org/euclid.aaa/1393450132