Abstract and Applied Analysis

Nonstationary Fronts in the Singularly Perturbed Power-Society Model

M. G. Dmitriev, A. A. Pavlov, and A. P. Petrov

Full-text: Open access

Abstract

The theory of contrasting structures in singularly perturbed boundary problems for nonlinear parabolic partial differential equations is applied to the research of formation of steady state distributions of power within the nonlinear “power-society” model. The interpretations of the solutions to the equation are presented in terms of applied model. The possibility theorem for the problem of getting the solution having some preassigned properties by means of parametric control is proved.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 172654, 8 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393450132

Digital Object Identifier
doi:10.1155/2013/172654

Mathematical Reviews number (MathSciNet)
MR3121508

Zentralblatt MATH identifier
1304.35049

Citation

Dmitriev, M. G.; Pavlov, A. A.; Petrov, A. P. Nonstationary Fronts in the Singularly Perturbed Power-Society Model. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 172654, 8 pages. doi:10.1155/2013/172654. https://projecteuclid.org/euclid.aaa/1393450132


Export citation

References

  • V. F. Butuzov and A. B. Vasil'eva, “Asymptotic behavior of a solution of contrasting structure type,” Akademiya Nauk SSSR, vol. 42, no. 6, pp. 831–841, 1987.
  • V. F. Butuzov, A. B. Vasil'eva, and N. N. Nefedov, “Asymptotic theory of contrasting structures. A survey,” Automation and Remote Control, vol. 58, no. 7, pp. 1068–1091, 1997.
  • A. B. Vasil'eva, V. F. Butuzov, and N. N. Nefedov, “Singularly perturbed problems with boundary and internal layers,” Proceedings of the Steklov Institute of Mathematics, vol. 268, no. 1, pp. 258–273, 2010.
  • A. B. Vasil'eva, V. F. Butuzov, and N. N. Nefëdov, “Contrast structures in singularly perturbed problems,” Fundamental'naya i Prikladnaya Matematika, vol. 4, no. 3, pp. 799–851, 1998.
  • Yu. V. Bozhevol'nov and N. N. Nefëdov, “Front motion in a parabolic reaction-diffusion problem,” Computational Mathematics and Mathematical Physics, vol. 50, no. 2, pp. 264–273, 2010.
  • A. Vasil'eva, A. Nikitin, and A. Petrov, “Stability of contrasting solutions of nonlinear hydromagnetic dynamo equations and magnetic fields reversals in galaxies,” Geophysical and Astrophysical Fluid Dynamics, vol. 78, no. 1–4, pp. 261–279, 1994.
  • D. Moss, A. Petrov, and D. Sokoloff, “The motion of magnetic fronts in spiral galaxies,” Geophysical and Astrophysical Fluid Dynamics, vol. 92, no. 1-2, pp. 129–149, 2000.
  • A. B. Vasil'eva, A. P. Petrov, and À. À. Plotnikov, “Alternating contrast structures,” Computational Mathematics and Mathematical Physics, vol. 38, no. 9, pp. 1471–1480, 1998.
  • A. P. Mikhailov, “Mathematical modeling of the authority in the hierarchical structures,” Mathematical Modeling, vol. 6, article 6, 1994 (Russian).
  • A. A. Samarskii and A. P. Mikhailov, Principles of mathematical modeling, Ideas, methods, examples, vol. 3 of Numerical Insights, Taylor & Francis, London, UK, 2002.
  • A. P. Mikhailov, “Mathematical modeling of power distribution in state ierarchical structures interacting with civil society,” in Proceedings of 14th IMACS World Congress, vol. 2, p. 828, Atlanta, Ga, USA, 1994.
  • A. P. Mikhailov, “The research of the “Power-Society” system,” Fizmatlit, 2006, (in Russian).
  • V. F. Butuzov and I. V. Nedelko, “On the global influence domain of stable solutions with internal layers,” Differential Equations, vol. 192, no. 5, pp. 13–52, 2001.
  • N. N. Nefëdov and A. G. Nikitin, “The method of differential inequalities for step-type contrast structures in singularly perturbed integro-differential equations in the spatially two-dimensional case,” Differential Equations, vol. 42, no. 5, pp. 739–749, 2006.
  • N. N. Nefedov, A. G. Nikitin, M. A. Petrova, and L. Rekke, “Moving fronts in integro-parabolic reaction-advection-diffusion equations,” Differential Equations, vol. 47, no. 9, pp. 1318–1332, 2011.
  • N. N. Nefëdov and A. G. Nikitin, “Boundary and internal layers in the reaction-diffusion problem with a nonlocal inhibitor,” Computational Mathematics and Mathematical Physics, vol. 51, no. 6, pp. 1011–1019, 2011.
  • M. Dmitriev, A. Petrov, and G. Zhukova, “The nonlinear “Authority-Society” model,” WSEAS Transactions on Mathematics, vol. 2, no. 1-2, pp. 31–36, 2003.
  • A. B. Vasil'eva and V. F. Butuzov, “The method of boundary layer functions,” Differential Equations, vol. 21, no. 10, pp. 1107–1112, 1985.
  • M. G. Dmitriev, A. A. Pavlov, and A. P. Petrov, “Optimal power volume in social-economical hierarchy by consumption per capita criterion,” Informacionnye Technologii i Vychislitelnye Sistemy, vol. 4, pp. 4–11, 2007 (Russian).