Abstract and Applied Analysis

Influential Node Control Strategy for Opinion Evolution on Social Networks

Cheng Ju, Jinde Cao, Weiqi Zhang, and Mengxin Ji

Full-text: Open access

Abstract

We study opinion dynamics in social networks and present a new strategy to control the invasive opinion. A developed continuous-opinion evolution model is proposed to describe the mechanism of making decision in closed community. Two basic strategies of evolution are determined, and some basic features of our new model are analyzed. We study the different invasive strategies. It is shown via using Monte Carlo simulations that our new model shows different invulnerability with traditional model. Node degree and cohesion in invasive small-world community plays less significant role when the evolution of opinion is continuous rather than dichotomous. Using simulation, we find one kind of Influential Nodes that can affect the outcome dramatically, while these Influential Nodes are sensitive to their node degree and the evolution weight. Thus, we develop invasive control strategy based on these features.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 689495, 6 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449804

Digital Object Identifier
doi:10.1155/2013/689495

Mathematical Reviews number (MathSciNet)
MR3139432

Zentralblatt MATH identifier
07095239

Citation

Ju, Cheng; Cao, Jinde; Zhang, Weiqi; Ji, Mengxin. Influential Node Control Strategy for Opinion Evolution on Social Networks. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 689495, 6 pages. doi:10.1155/2013/689495. https://projecteuclid.org/euclid.aaa/1393449804


Export citation

References

  • N. Crokidakis and F. L. Forgerini, “Consequence of reputation in the Sznajd consensus model,” Physics Letters A, vol. 374, no. 34, pp. 3380–3383, 2010.
  • P. Holme and M. E. J. Newman, “Nonequilibrium phase transition in the coevolution of networks and opinions,” Physical Review E, vol. 74, no. 5, Article ID 056108, 5 pages, 2006.
  • R. Lambiotte, M. Ausloos, and J. A. Hołyst, “Majority model on a network with communities,” Physical Review E, vol. 75, no. 3, Article ID 030101, 4 pages, 2007.
  • F. Radicchi and S. Fortunato, “Explosive percolation: a numerical analysis,” Physical Review E, vol. 81, no. 3, Article ID 036110, 10 pages, 2010.
  • M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002.
  • P. L. Krapivsky and S. Redner, “Dynamics of majority rule in two-state interacting spin systems,” Physical Review Letters, vol. 90, no. 23, Article ID 238701, 4 pages, 2003.
  • M. Lewenstein, A. Nowak, and B. Latané, “Statistical mechanics of social impact,” Physical Review A, vol. 45, no. 2, pp. 763–776, 1992.
  • Y. Chen, G. Paul, S. Havlin, F. Liljeros, and H. E. Stanley, “Finding a better immunization strategy,” Physical Review Letters, vol. 101, no. 5, Article ID 058701, 4 pages, 2008.
  • R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Resilience of the Internet to random breakdowns,” Physical Review Letters, vol. 85, no. 21, pp. 4626–4628, 2000.
  • R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Breakdown of the internet under intentional attack,” Physical Review Letters, vol. 86, no. 16, pp. 3682–3685, 2001.
  • P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of complex networks,” Physical Review E, vol. 65, no. 5, Article ID 056109, 14 pages, 2002.
  • L. K. Gallos, F. Liljeros, P. Argyrakis, A. Bunde, and S. Havlin, “Improving immunization strategies,” Physical Review E, vol. 75, no. 4, Article ID 045104, 4 pages, 2007.
  • M. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Physical Review E, vol. 64, no. 1, Article ID 016131, 8 pages, 2001.
  • M. E. J. Newman, “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality,” Physical Review E, vol. 64, no. 1, Article ID 016132, 7 pages, 2001.
  • R. M. Tripathy, A. Bagchi, and S. Mehta, “A study of rumor control strategies on social networks,” in Proceedings of the ACM 19th International Conference on Information and Knowledge Management (CIKM '10), pp. 1817–1820, ACM, October 2010.
  • A. J. Kimmel and A. Audrain-Pontevia, “Analysis of commercial rumors from the perspective of marketing managers: rumor prevalence, effects, and control tactics,” Journal of Marketing Communications, vol. 16, no. 4, pp. 239–253, 2010.
  • L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang, and W. Huang, “Rumor spreading model with consideration of forgetting mechanism: a case of online blogging LiveJournal,” Physica A, vol. 390, no. 13, pp. 2619–2625, 2011.
  • G. Huang, J. Cao, and Y. Qu, “The minority's success under majority rule,” Physica A, vol. 388, no. 18, pp. 3911–3916, 2009.
  • C. Ju, Y. Cao, and P. Zhou, “The effect of different strategies and the structure on opinion formation,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 705318, 6 pages, 2013.