## Abstract and Applied Analysis

### Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments

#### Abstract

In this paper, we propose the study of an integral equation, with deviating arguments, of the type $y(t)=\mathrm{\omega }(t)-{\int }_{\mathrm{0}}^{\mathrm{\infty }}\mathrm{‍}f(t,s,\mathrm{y}({\gamma }_{\mathrm{1}}(\mathrm{s})),\dots ,\mathrm{y}({\gamma }_{N}(\mathrm{s})))\mathrm{}ds,\mathrm{}\mathrm{}\mathrm{}\mathrm{}t\ge \mathrm{0},$ in the context of Banach spaces, with the intention of giving sufficient conditions that ensure the existence of solutions with the same asymptotic behavior at $\mathrm{\infty }$ as $\mathrm{\omega }(t)$. A similar equation, but requiring a little less restrictive hypotheses, is $y(t)=\mathrm{\omega }(t)-{\int }_{\mathrm{0}}^{\mathrm{\infty }}\mathrm{‍}q(t,s)\mathrm{}F(s,\mathrm{y}({\gamma }_{\mathrm{1}}(s)),\dots ,\mathrm{y}({\gamma }_{N}(s)))\mathrm{}ds,\mathrm{}\mathrm{}\mathrm{}\mathrm{}t\ge \mathrm{0}.$ In the case of $q(t,s)=(t-s{)}_{+}$, its solutions with asymptotic behavior given by $\mathrm{\omega }(t)$ yield solutions of the second order nonlinear abstract differential equation $y\text{'}\text{'}(t)-\omega \text{'}\text{'}(t)+F(t,\mathrm{y}({\gamma }_{\mathrm{1}}(t)),\dots ,\mathrm{y}({\gamma }_{N}(t)))=\mathrm{0},$ with the same asymptotic behavior at $\mathrm{\infty }$ as $\mathrm{\omega }(t)$.

#### Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 957696, 7 pages.

Dates
First available in Project Euclid: 26 February 2014

https://projecteuclid.org/euclid.aaa/1393449713

Digital Object Identifier
doi:10.1155/2013/957696

Mathematical Reviews number (MathSciNet)
MR3147793

Zentralblatt MATH identifier
07095536

#### Citation

González, Cristóbal; Jiménez-Melado, Antonio. Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 957696, 7 pages. doi:10.1155/2013/957696. https://projecteuclid.org/euclid.aaa/1393449713

#### References

• F. V. Atkinson, “On second order nonlinear oscillation,” Pacific Journal of Mathematics, vol. 5, pp. 643–647, 1955.
• A. Constantin, “On the existence of positive solutions of second order differential equations,” Annali di Matematica Pura ed Applicata. Series IV, vol. 184, no. 2, pp. 131–138, 2005.
• S. G. Dubé and A. B. Mingarelli, “Note on a non-oscillation theorem of Atkinson,” Electronic Journal of Differential Equations, vol. 2004, article 22, 6 pages, 2004, http://ejde.math.txstate.edu.
• M. Ehrnström, “Positive solutions for second-order nonlinear differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 64, no. 7, pp. 1608–1620, 2006.
• M. Ehrnström, “Linear asymptotic behaviour of second order ordinary differential equations,” Glasgow Mathematical Journal, vol. 49, no. 1, pp. 105–120, 2007.
• C. González and A. Jiménez-Melado, “Existence of monotonic asymptotically constant solutions for second order differential equations,” Glasgow Mathematical Journal, vol. 49, no. 3, pp. 515–523, 2007.
• C. González and A. Jiménez-Melado, “Asymptotic behavior of solutions to an integral equation underlying a second-order differential equation,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 70, no. 2, pp. 822–829, 2009.
• O. Lipovan, “On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations,” Glasgow Mathematical Journal, vol. 45, no. 1, pp. 179–187, 2003.
• O. G. Mustafa and Y. V. Rogovchenko, “Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 51, no. 2, pp. 339–368, 2002.
• E. Wahlén, “Positive solutions of second-order differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 58, no. 3-4, pp. 359–366, 2004.
• G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, vol. 85 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1972.
• E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Fixed-Point Theorems, Springer, New York, NY, USA, 1986, Translated from the German by P. R. Wadsack.
• J. Dugundji, Topology, Allyn and Bacon, Boston, Mass, USA, 1966.
• S. Mazur, “Uber die kleinste konvexe Menge, die eine gegebene kompakte Menge enthalt,” Studia Mathematica, vol. 2, pp. 7–9, 1930.