Abstract and Applied Analysis

Dynamical Behavior of a Rumor Transmission Model with Psychological Effect in Emergency Event

Liang'an Huo, Tingting Lin, and Peiqing Huang

Full-text: Open access

Abstract

A rumor transmission model with nonmonotonic incidence rate was proposed, which provides excellent explanations of the “psychological” effect with rumor spreading in emergency event. By carrying out a global analysis of the model and studying the stability of the rumor-free equilibrium and the rumor-endemic equilibrium, we showed that either the number of infective individuals tends to zero as time evolves or the rumor persists. Finally, recommendations for policy makers and consulting advice for related commissions are explored in the case study of crazy rumors propagated for the iodized sail shortage panic in China.

Article information

Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 282394, 9 pages.

Dates
First available in Project Euclid: 26 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393449355

Digital Object Identifier
doi:10.1155/2013/282394

Mathematical Reviews number (MathSciNet)
MR3147845

Zentralblatt MATH identifier
1291.91181

Citation

Huo, Liang'an; Lin, Tingting; Huang, Peiqing. Dynamical Behavior of a Rumor Transmission Model with Psychological Effect in Emergency Event. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 282394, 9 pages. doi:10.1155/2013/282394. https://projecteuclid.org/euclid.aaa/1393449355


Export citation

References

  • H. Hayakawa, Sociology of Rumor-Approach from Formal Sociology, Seikyusya, Tokyo, Japan, 2002.
  • M. Kosfeld, “Rumours and markets,” Journal of Mathematical Economics, vol. 41, no. 6, pp. 646–664, 2005.
  • D. J. Daley and D. G. Kendall, “Stochastic rumours,” IMA Jou-rnal of Applied Mathematics, vol. 1, no. 1, pp. 42–55, 1965.
  • D. P. Maki and M. Thompson, Mathematical Models and Applications, with Emphasis on Social, Life, and Management Sciences, Prentice-Hall, Englewood Cliffs, NJ, USA, 1973.
  • D. J. Daley and J. Gani, Epidemic Modelling, Cambridge University Press, Cambridge, UK, 2000.
  • L. M. A. Bettencourt, A. Cintrón-Arias, D. I. Kaiser, and C. Castillo-Chávez, “The power of a good idea: quantitative mode-ling of the spread of ideas from epidemiological models,” Physica A, vol. 364, pp. 513–536, 2006.
  • W. Huang, “On rumour spreading with skepticism and denial,” Tech. Rep., 2011.
  • K. Kawachi, “Deterministic models for rumor transmission,” Nonlinear Analysis; Real World Applications, vol. 9, no. 5, pp. 1989–2028, 2008.
  • K. Kawachi, M. Seki, H. Yoshida, Y. Otake, K. Warashina, and H. Ueda, “A rumor transmission model with various contact interactions,” Journal of Theoretical Biology, vol. 253, no. 1, pp. 55–60, 2008.
  • E. Lebensztayn, F. P. Machado, and P. M. Rodrguez, “Limit theorems for a general stochastic rumour model,” SIAM Journal of Applied Mathematics, vol. 71, no. 4, pp. 1476–1486, 2011.
  • L. A. Huo, P. Huang, and C. Guo, “Analyzing the dynamics of a rumor transmission model with incubation,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 328151, 21 pages, 2012.
  • C. E. M. Pearce, “The exact solution of the general stochastic rumour,” Mathematical and Computer Modelling, vol. 31, no. 10–12, pp. 289–298, 2000.
  • J. Gani, “The Maki-Thompson rumour model: a detailed analysis,” Environmental Modelling and Software, vol. 15, no. 8, pp. 721–725, 2000.
  • M. Nakamaru and M. Kawata, “Evolution of rumours that discriminate lying defectors,” Evolutionary Ecology Research, vol. 6, no. 2, pp. 261–283, 2004.
  • R. E. Dickinson and C. E. M. Pearce, “Rumours, epidemics, and processes of mass action: synthesis and analysis,” Mathematical and Computer Modelling, vol. 38, no. 11–13, pp. 1157–1167, 2003.
  • O. Chichigina, D. Valenti, and B. Spagnolo, “A simple noise model with memory for biological systems,” Fluctuation and Noise Letters, vol. 5, no. 2, pp. L243–L250, 2005.
  • O. A. Chichigina, A. A. Dubkov, D. Valenti, and B. Spagnolo, “Stability in a system subject to noise with regulated periodicity,” Physical Review E, vol. 84, no. 2, Article ID 021134, 2011.
  • C. Udriste, M. Ferrara, D. Zugravescu et al., “Controllability of a nonholonomic macroeconomic system,” Journal of Optimization Theory and Applications, vol. 154, no. 3, pp. 1036–1054, 2012.
  • E. Lanzara, R. N. Mantegna, B. Spagnolo, and R. Zangara, “Experimental study of a nonlinear system in the presence of noise: the stochastic resonance,” American Journal of Physics, vol. 65, no. 4, pp. 341–349, 1997.
  • R. N. Mantegna and B. Spagnolo, “Stochastic resonance in a tunnel diode in the presence of white or coloured noise,” Il Nuovo Cimento D, vol. 17, no. 7-8, pp. 873–881, 1995.
  • D. Valenti, G. Augello, and B. Spagnolo, “Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise,” The European Physical Journal B, vol. 65, no. 3, pp. 443–451, 2008.
  • C. Castillo-Chávez and B. Song, “Models for the transmission dynamics of fanatic behaviors,” in Bioterrorism: Mathematical Modeling Applications to Homeland Security, T. Banks and C. Castillo-Chávez, Eds., vol. 28 of SIAM Series Frontiers in Applied Mathematics, pp. 155–172, 2003.
  • Y. Moreno, M. Nekovee, and A. F. Pacheco, “Dynamics of rumor spreading in complex networks,” Physical Review E, vol. 69, no. 6, Article ID 066130, 7 pages, 2004.
  • D. H. Zanette, “Dynamics of rumor propagation on small-world networks,” Physical Review E, vol. 65, no. 4, Article ID 041908, 9 pages, 2002.
  • M. Nekovee, Y. Moreno, G. Bianconi, and M. Marsili, “Theory of rumour spreading in complex social networks,” Physica A, vol. 374, no. 1, pp. 457–470, 2007.
  • V. Isham, S. Harden, and M. Nekovee, “Stochastic epidemics and rumours on finite random networks,” Physica A, vol. 389, no. 3, pp. 561–576, 2010.
  • D. H. Zanette, “Critical behavior of propagation on small-world networks,” Physical Review E, vol. 64, no. 5, Article ID 050901, 4 pages, 2001.
  • P. Berenbrink, R. Elsässer, and T. Sauerwald, “Communication complexity of quasirandom rumor spreading,” in Algorithms–-ESA 2010, M. de Berg and U. Meyer, Eds., vol. 6346 of Lecture Notes in Computer Science, pp. 134–145, Springer, 2010.
  • T. Sauerwald and A. Stauery, “Rumor spreading and vertex expansion on regular graphs,” in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '11), pp. 462–475, 2011.
  • L. Buzna, K. Peters, and D. Helbing, “Modelling the dynamics of disaster spreading in networks,” Physica A, vol. 363, no. 1, pp. 132–140, 2006.
  • L. J. Zhao, Q. Wang, J. J. Cheng, Y. Chen, J. Wang, and W. Huang, “Rumor spreading model with consideration of forge-tting mechanism: a case of online blogging LiveJournal,” Physica A, vol. 390, no. 13, pp. 2619–2625, 2011.
  • G. W. Allport and L. Postman, The Psychology Ofrumor, H. Holt, New York, NY, USA, 1947.
  • G. C. Homans, Social Behavior: Its Elementary Forms, Harcourt Brace Jovanovich, New York, NY, USA, 1974.
  • R. L. Rosnow, “On rumor,” Journal of Communication, vol. 24, pp. 26–38, 1974.
  • S. C. Pendleton, “Rumor research revisited and expanded,” Language and Communication, vol. 18, no. 1, pp. 69–86, 1998.
  • H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review, vol. 42, no. 4, pp. 599–653, 2000.
  • K. Thompson, R. Castro Estrada, D. Daugherty et al., “A deterministic approach to the spread of rumors,” Tech. Rep., Washington, DC, USA, 2003.
  • L. Perko, Differential Equations and Dynamical Systems, vol. 7, Springer, New York, NY, USA, 1996.
  • L. J. Zhao, Q. Wang, J. J. Cheng, Y. Chen, J. Wang, and W. Huang, “Rumor spreading model with consideration of forge-tting mechanism: a case of online blogging LiveJournal,” Physica A, vol. 390, no. 13, pp. 2619–2625, 2011. \endinput