Abstract and Applied Analysis
- Abstr. Appl. Anal.
- Volume 2013, Special Issue (2013), Article ID 954513, 6 pages.
Starlikeness and Convexity of Generalized Struve Functions
Full-text: Open access
Abstract
We give sufficient conditions for the parameters of the normalized form of the generalized Struve functions to be convex and starlike in the open unit disk.
Article information
Source
Abstr. Appl. Anal., Volume 2013, Special Issue (2013), Article ID 954513, 6 pages.
Dates
First available in Project Euclid: 26 February 2014
Permanent link to this document
https://projecteuclid.org/euclid.aaa/1393448862
Digital Object Identifier
doi:10.1155/2013/954513
Mathematical Reviews number (MathSciNet)
MR3035216
Zentralblatt MATH identifier
1272.30033
Citation
Yagmur, Nihat; Orhan, Halit. Starlikeness and Convexity of Generalized Struve Functions. Abstr. Appl. Anal. 2013, Special Issue (2013), Article ID 954513, 6 pages. doi:10.1155/2013/954513. https://projecteuclid.org/euclid.aaa/1393448862
References
- A. Baricz, “Geometric properties of generalized Bessel functions,” Publicationes Mathematicae Debrecen, vol. 73, no. 1-2, pp. 155–178, 2008.Mathematical Reviews (MathSciNet): MR2429033
- E. Deniz, H. Orhan, and H. M. Srivastava, “Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions,” Taiwanese Journal of Mathematics, vol. 15, no. 2, pp. 883–917, 2011.Mathematical Reviews (MathSciNet): MR2810187
- E. Deniz, “Convexity of integral operators involving generalized Bessel functions,” Integral Transforms and Special Functions, vol. 1, pp. 1–16, 2012.Mathematical Reviews (MathSciNet): MR3021327
Digital Object Identifier: doi:10.1080/10652469.2012.685938 - S. Owa and H. M. Srivastava, “Univalent and starlike generalized hypergeometric functions,” Canadian Journal of Mathematics, vol. 39, no. 5, pp. 1057–1077, 1987.
- V. Selinger, “Geometric properties of normalized Bessel functions,” Pure Mathematics and Applications, vol. 6, no. 2-3, pp. 273–277, 1995.Mathematical Reviews (MathSciNet): MR1430277
- H. M. Srivastava, D.-G. Yang, and N.-E. Xu, “Subordinations for multivalent analytic functions associated with the Dziok-Srivastava operator,” Integral Transforms and Special Functions, vol. 20, no. 7-8, pp. 581–606, 2009.Mathematical Reviews (MathSciNet): MR2543767
Digital Object Identifier: doi:10.1080/10652460902723655 - H. M. Srivastava, “Generalized hypergeometric functions and associated families of $k$-uniformly convex and $k$-starlike functions,” General Mathematics, vol. 15, no. 3, pp. 201–226, 2007.Mathematical Reviews (MathSciNet): MR2369077
- H. M. Srivastava, G. Murugusundaramoorthy, and S. Sivasubramanian, “Hypergeometric functions in the parabolic starlike and uniformly convex domains,” Integral Transforms and Special Functions, vol. 18, no. 7-8, pp. 511–520, 2007.Mathematical Reviews (MathSciNet): MR2348596
Digital Object Identifier: doi:10.1080/10652460701391324 - D. Răducanu and H. M. Srivastava, “A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function,” Integral Transforms and Special Functions, vol. 18, no. 11-12, pp. 933–943, 2007.Mathematical Reviews (MathSciNet): MR2374592
Digital Object Identifier: doi:10.1080/10652460701542074 - P. L. Duren, Univalent Functions, vol. 259 of Fundamental Principles of Mathematical Sciences, Springer, New York, NY, USA, 1983.Mathematical Reviews (MathSciNet): MR708494
- J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions,” Annals of Mathematics, vol. 17, no. 1, pp. 12–22, 1915.
- W. Kaplan, “Close-to-convex schlicht functions,” The Michigan Mathematical Journal, vol. 1, p. 169–185 (1953), 1952.Mathematical Reviews (MathSciNet): MR0054711
Digital Object Identifier: doi:10.1307/mmj/1028988895
Project Euclid: euclid.mmj/1028988895 - S. Ozaki, “On the theory of multivalent functions,” Science Reports of the Tokyo Bunrika Daigaku, vol. 2, pp. 167–188, 1935.
- H. Silverman, “Univalent functions with negative coefficients,” Proceedings of the American Mathematical Society, vol. 51, pp. 109–116, 1975.Mathematical Reviews (MathSciNet): MR0369678
Digital Object Identifier: doi:10.1090/S0002-9939-1975-0369678-0 - S. Zhang and J. Jin, Computation of Special Functions, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1996.Mathematical Reviews (MathSciNet): MR1406797
- H. Orhan and N. Yağmur, “Geometric properties of generalized Struve functions,” in The International Congress in Honour of Professor Hari M. Srivastava, Bursa, Turkey, August, 2012.
- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Some Sufficient Conditions for Starlikeness and Convexity of Order α
Cang, Yi-Ling and Liu, Jin-Lin, Journal of Applied Mathematics, 2013 - Starlikeness of sections of univalent functions
Obradović, M. and Ponnusamy, S., Rocky Mountain Journal of Mathematics, 2014 - Subclasses of Multivalent Starlike and Convex Functions
Ali, Rosihan M., Lee, See Keong, and Ravichandran, V., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2009
- Some Sufficient Conditions for Starlikeness and Convexity of Order α
Cang, Yi-Ling and Liu, Jin-Lin, Journal of Applied Mathematics, 2013 - Starlikeness of sections of univalent functions
Obradović, M. and Ponnusamy, S., Rocky Mountain Journal of Mathematics, 2014 - Subclasses of Multivalent Starlike and Convex Functions
Ali, Rosihan M., Lee, See Keong, and Ravichandran, V., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2009 - Coefficient Conditions for Starlikeness of Nonnegative Order
Ali, Rosihan M., Lee, See Keong, and Mondal, Saiful R., Abstract and Applied Analysis, 2012 - Starlikeness Properties of a New Integral Operator for Meromorphic Functions
Mohammed, Aabed and Darus, Maslina, Journal of Applied Mathematics, 2011 - Starlikeness of Functions Defined by Third-Order Differential Inequalities and Integral Operators
Chandrashekar, R., Ali, Rosihan M., Subramanian, K. G., and Swaminathan, A., Abstract and Applied Analysis, 2014 - Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions
Erhan, Erhan, Orhan, Halit, and Srivastava, H. M., Taiwanese Journal of Mathematics, 2011 - Application of duality techniques to starlikeness of weighted integral transforms
Aghalary, R., Ebadian, A., and Shams, S., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2010 - On $\lambda$-pseudo bi-starlike and $\lambda$-pseudo bi-convex functions with respect to symmetrical points
Eker, S. Sümer and Şeker, Bilal, Tbilisi Mathematical Journal, 2018 - On Certain Subclass of Harmonic Starlike Functions
Lashin, A. Y., Abstract and Applied Analysis, 2014