Abstract and Applied Analysis

Existence Theorems for Quasivariational Inequality Problem on Proximally Smooth Sets

Jittiporn Suwannawit and Narin Petrot

Full-text: Open access

Abstract

The concept of quasivariational inequality problem on proximally smooth sets is studied. Some sufficient conditions for solving the existence of solutions of such a problem are provided; also some interesting cases are discussed. Of course, due to the significance of proximally smooth sets, the results which are presented in this paper improve and extend many important results in the literature.

Article information

Source
Abstr. Appl. Anal., Volume 2013 (2013), Article ID 612819, 7 pages.

Dates
First available in Project Euclid: 18 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1366306741

Digital Object Identifier
doi:10.1155/2013/612819

Mathematical Reviews number (MathSciNet)
MR3034908

Zentralblatt MATH identifier
1277.47073

Citation

Suwannawit, Jittiporn; Petrot, Narin. Existence Theorems for Quasivariational Inequality Problem on Proximally Smooth Sets. Abstr. Appl. Anal. 2013 (2013), Article ID 612819, 7 pages. doi:10.1155/2013/612819. https://projecteuclid.org/euclid.aaa/1366306741


Export citation

References

  • A. Bensoussan, M. Goursat, and J.-L. Lions, “Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires,” vol. 276, pp. A1279–A1284, 1973.
  • G. Stampacchia, “Formes bilinéaires coercitives sur les ensembles convexes,” vol. 258, pp. 4413–4416, 1964.
  • M. Alimohammady, J. Balooee, Y. J. Cho, and M. Roohi, “Iterative algorithms for a new class of extended general nonconvex set-valued variational inequalities,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 73, no. 12, pp. 3907–3923, 2010.
  • J. Balooee and Y. J. Cho, “Algorithms for solutions of extended general mixed variational inequalities and fixed points,” Optimization Letters, p. 27, 2012.
  • S. S. Chang, Variational Inequality and Complementarity Problem Theory with Applications, Shanghai Scientific and Technology Literature, Shanghai, China, 1991.
  • W. Chantarangsi, C. Jaiboon, and P. Kumam, “A viscosity hybrid steepest descent method for generalized mixed equilibrium problems and variational inequalities for relaxed cocoercive mapping in Hilbert spaces,” Abstract and Applied Analysis, vol. 2010, Article ID 390972, 39 pages, 2010.
  • S.-S. Chang, B. S. Lee, X. Wu, Y. J. Cho, and G. M. Lee, “On the generalized quasi-variational inequality problems,” Journal of Mathematical Analysis and Applications, vol. 203, no. 3, pp. 686–711, 1996.
  • Y. J. Cho and X. Qin, “Systems of generalized nonlinear variational inequalities and its projection methods,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 69, no. 12, pp. 4443–4451, 2008.
  • G. Gu, S. Wang, and Y. J. Cho, “Strong convergence algorithms for hierarchical fixed points problems and variational inequalities,” Journal of Applied Mathematics, vol. 2011, Article ID 164978, 17 pages, 2011.
  • N.-J. Huang, M.-R. Bai, Y. J. Cho, and S. M. Kang, “Generalized nonlinear mixed quasi-variational inequalities,” Computers & Mathematics with Applications, vol. 40, no. 2-3, pp. 205–215, 2000.
  • N. J. Huang, “On the generalized implicit quasivariational inequalities,” Journal of Mathematical Analysis and Applications, vol. 216, no. 1, pp. 197–210, 1997.
  • C. Jaiboon and P. Kumam, “A general iterative method for solving equilibrium problems, variational inequality problems and fixed point problems of an infinite family of nonexpansive mappings,” Journal of Applied Mathematics and Computing, vol. 34, no. 1-2, pp. 407–439, 2010.
  • P. Kumam, “Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space,” Turkish Journal of Mathematics, vol. 33, no. 1, pp. 85–98, 2009.
  • X. Qin, M. Shang, and Y. Su, “Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems,” Mathematical and Computer Modelling, vol. 48, no. 7-8, pp. 1033–1046, 2008.
  • X. Qin, M. Shang, and H. Zhou, “Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces,” Applied Mathematics and Computation, vol. 200, no. 1, pp. 242–253, 2008.
  • S. Suantai and N. Petrot, “Existence and stability of iterative algorithms for the system of nonlinear quasi-mixed equilibrium problems,” Applied Mathematics Letters, vol. 24, no. 3, pp. 308–313, 2011.
  • Y. H. Yao, Y. C. Liou, and J. C. Yao, “An extra gradient method for fixed point problems and variational inequality problems,” Journal of Inequalities and Applications, vol. 2007, Article ID 38752, 12 pages, 2007.
  • Y. Yao, Y.-C. Liou, and J.-C. Yao, “A new hybrid iterative algorithm for fixed-point problems, variational inequality problems, and mixed equilibrium problems,” Fixed Point Theory and Applications, vol. 2008, Article ID 417089, 15 pages, 2008.
  • M. Bounkhel, L. Tadj, and A. Hamdi, “Iterative schemes to solve nonconvex variational problems,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, 14 pages, 2003.
  • F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory, vol. 178, Springer, New York, NY, USA, 1998.
  • F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, NY, USA, 1983.
  • F. H. Clarke, R. J. Stern, and P. R. Wolenski, “Proximal smoothness and the lower \emphC $^{2}$ property,” Journal of Convex Analysis, vol. 2, no. 1-2, pp. 117–144, 1995.
  • Y. J. Cho, J. K. Kim, and R. U. Verma, “A class of nonlinear variational inequalities involving partially relaxed monotone mappings and general auxiliary problem principle,” Dynamic Systems and Applications, vol. 11, no. 3, pp. 333–338, 2002.
  • A. Moudafi, “An algorithmic approach to prox-regular variational inequalities,” Applied Mathematics and Computation, vol. 155, no. 3, pp. 845–852, 2004.
  • M. A. Noor, “Iterative schemes for nonconvex variational inequalities,” Journal of Optimization Theory and Applications, vol. 121, no. 2, pp. 385–395, 2004.
  • M. A. Noor, N. Petrot, and J. Suwannawit, “Existence theorems for multivalued variational inequality problems on uniformly prox-regular sets,” Optimization Letters, 2012.
  • N. Petrot, “Some existence theorems for nonconvex variational inequalities problems,” Abstract and Applied Analysis, vol. 2010, Article ID 472760, 9 pages, 2010.
  • L.-P. Pang, J. Shen, and H.-S. Song, “A modified predictor-corrector algorithm for solving nonconvex generalized variational inequality,” Computers & Mathematics with Applications, vol. 54, no. 3, pp. 319–325, 2007.
  • R. A. Poliquin, R. T. Rockafellar, and L. Thibault, “Local differentiability of distance functions,” Transactions of the American Mathematical Society, vol. 352, no. 11, pp. 5231–5249, 2000.