Abstract and Applied Analysis

Basis Properties of Eigenfunctions of Second-Order Differential Operators with Involution

Asylzat Kopzhassarova and Abdizhakhan Sarsenbi

Full-text: Open access

Abstract

We study the basis properties of systems of eigenfunctions and associated functions for one kind of generalized spectral problems for a second-order ordinary differential operator.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 576843, 6 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365174072

Digital Object Identifier
doi:10.1155/2012/576843

Mathematical Reviews number (MathSciNet)
MR2969997

Zentralblatt MATH identifier
1270.34195

Citation

Kopzhassarova, Asylzat; Sarsenbi, Abdizhakhan. Basis Properties of Eigenfunctions of Second-Order Differential Operators with Involution. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 576843, 6 pages. doi:10.1155/2012/576843. https://projecteuclid.org/euclid.aaa/1365174072


Export citation

References

  • T. Li, Z. Han, C. Zhang, and H. Li, “Oscillation criteria for second-order superlinear neutral differential equations,” Abstract and Applied Analysis, vol. 2011, Article ID 367541, 17 pages, 2011.
  • A. Zafer, “Oscillation of second-order sublinear impulsive differential equations,” Abstract and Applied Analysis, vol. 2011, Article ID 458275, 11 pages, 2011.
  • A. M. A. El-Sayed, E. M. Hamdallah, and Kh. W. El-kadeky, “Monotonic positive solutions of nonlocal boundary value problems for a second-order functional differential equation,” Abstract and Applied Analysis, vol. 2012, Article ID 489353, 12 pages, 2012.
  • R. Cheng, “Oscillatory periodic solutions for two differential-difference equations arising in applications,” Abstract and Applied Analysis, vol. 2011, Article ID 635926, 12 pages, 2011.
  • J. Džurina and R. Komariková, “Asymptotic properties of third-order delay trinomial differential equations,” Abstract and Applied Analysis, vol. 2011, Article ID 730128, 10 pages, 2011.
  • C. Babbage, “An essay towards the calculus of calculus of functions,” Philosophical Transactions of the Royal Society of London, vol. 106, pp. 179–256, 1816.
  • J. Wiener, Generalized Solutions of Functional-Differential Equations, World Scientific, Singapore, 1993.
  • M. A. Sadybekov and A. M. Sarsenbi, “Solution of fundamental spectral problems for all the boundary value problems for a first-order differential equation with a deviating argument,” Uzbek Mathematical Journal, vol. 3, pp. 88–94, 2007 (Russian).
  • M. A. Sadybekov and A. M. Sarsenbi, “On the notion of regularity of boundary value problems for differential equation of second order with dump argument,” Mathematical Journal, vol. 7, no. 1, article 23, 2007 (Russian).
  • A. M. Sarsenbi, “Unconditional bases related to a nonclassical second-order differential operator,” Differential Equations, vol. 46, no. 4, pp. 506–511, 2010.
  • A. M. Sarsenbi and A. A. Tengaeva, “On the basis properties of root functions of two generalized eigenvalue problems,” Differential Equations, vol. 48, no. 2, pp. 1–3, 2012.
  • V. P. Mihaĭlov, “On Riesz bases in ${L}_{2}$[0, 1],” Reports of the Academy of Sciences of the USSR, vol. 144, pp. 981–984, 1962.
  • G. M. Keselman, “On the unconditional convergence of eigenfunction expansions of certain differential operators,” Proceedings of Institutes of Higher Education, vol. 2, no. 39, pp. 82–93, 1964.
  • M. A. Naĭmark, Linear Differential Operators, Frederick Ungar, New York, NY, USA, 1968.