Abstract and Applied Analysis

Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables

A. M. A. El-Sayed, E. Ahmed, and H. A. A. El-Saka

Full-text: Open access

Abstract

We study the dynamic properties (equilibrium points, local and global stability, chaos and bifurcation) of the continuous dynamical system of the logistic equation of complex variables. The existence and uniqueness of uniformly Lyapunov stable solution will be proved.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 251715, 12 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365168356

Digital Object Identifier
doi:10.1155/2012/251715

Mathematical Reviews number (MathSciNet)
MR2965450

Zentralblatt MATH identifier
1246.37074

Citation

El-Sayed, A. M. A.; Ahmed, E.; El-Saka, H. A. A. Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 251715, 12 pages. doi:10.1155/2012/251715. https://projecteuclid.org/euclid.aaa/1365168356


Export citation

References

  • J. D. Gibbon and M. J. McGuinness, “The real and complex Lorenz equations in rotating fluids and lasers,” Physica D, vol. 5, no. 1, pp. 108–122, 1982.
  • G. M. Mahmoud, S. A. Aly, and A. A. Farghaly, “On chaos synchronization of a complex two coupled dynamos system,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp. 178–187, 2007.
  • G. M. Mahmoud, S. A. Aly, and M. A. AL-Kashif, “Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 171–181, 2008.
  • G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E. E. Mahmoud, “Chaos synchronization of two different chaotic complex Chen and Lü systems,” Nonlinear Dynamics, vol. 55, no. 1-2, pp. 43–53, 2009.
  • C. Z. Ning and H. Haken, “Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations,” Physical Review A, vol. 41, no. 7, pp. 3826–3837, 1990.
  • A. Rauh, L. Hannibal, and N. B. Abraham, “Global stability properties of the complex Lorenz model,” Physica D, vol. 99, no. 1, pp. 45–58, 1996.
  • Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex beam-beam interaction model with random forcing,” Physica A, vol. 336, no. 3-4, pp. 347–360, 2004.
  • Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex Duffing system with random excitation,” Chaos, Solitons and Fractals, vol. 35, no. 1, pp. 126–132, 2008.
  • E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.
  • A. M. A. El-Sayed, F. M. Gaafar, and H. H. G. Hashem, “On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differential equations,” Mathematical Sciences Research Journal, vol. 8, no. 11, pp. 336–348, 2004.
  • A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,” Applied Mathematics Letters, vol. 20, no. 7, pp. 817–823, 2007.
  • R. Gorenflo and F. Mainardi, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 223–276, Springer, Wien, Austria, 1997.
  • I. Podlubny and A. M. A. El-Sayed, On Two Definitions of Fractional Calculus, Slovak Academy of Science-Institute of Experimental Physics, 1996.
  • I. Podlubny, Fractional Differential Equations, Academic Press Inc., San Diego, Calif, USA, 1999.
  • Y. Suansook and K. Paithoonwattanakij, “Chaos in fractional order logistic model,” in Proceedings of the International Conference on Signal Processing Systems, pp. 297–301, May 2009.
  • I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Nonlinear Physical Science, Springer, New York, NY, USA, 2011.
  • R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London, UK, 1977.
  • A. M. A. El-Sayed and Sh. A. Abd El-Salam, “On the stability of a fractional-order differential equation with nonlocal initial condition,” Electronic Journal of Qualitative Theory of Differential Equations, no. 29, pp. 1–8, 2008.
  • A. M. A. El-Sayed, “On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications,” Alexandria Journal of Mathematics, vol. 1, no. 1, 2010.
  • E. Ahmed, A. M. A. El-Sayed, E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for the fractional replicator equation,” International Journal of Modern Physics C, vol. 16, no. 7, pp. 1017–1025, 2005.
  • E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,” Physics Letters A, vol. 358, no. 1, pp. 1–4, 2006.
  • H. A. El-Saka, E. Ahmed, M. I. Shehata, and A. M. A. El-Sayed, “On stability, persistence, and Hopf bifurcation in fractional order dynamical systems,” Nonlinear Dynamics, vol. 56, no. 1-2, pp. 121–126, 2009.
  • D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Proceedings of the Computational Engineering in Systems and Application multiconference, vol. 2, pp. 963–968, Lille, France, 1996.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application- Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics), Springer-Verlag, Berlin, Germany, 2010.
  • A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Computational & Applied Mathematics, vol. 23, no. 1, pp. 33–54, 2004.
  • A. E. M. El-Mesiry, A. M. A. El-Sayed, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 683–699, 2005.