Abstract and Applied Analysis

Singular Initial Value Problem for a System of Integro-Differential Equations

Zdeněk Šmarda and Yasir Khan

Full-text: Open access

Abstract

Analytical properties like existence, uniqueness, and asymptotic behavior of solutions are studied for the following singular initial value problem: g i ( t ) y i ( t ) = a i y i ( t ) ( 1 + f i ( t , y ( t ) , 0 + t K i ( t , s , y ( t ) , y ( s ) ) d s ) ) ,   y i ( 0 + ) = 0 ,   t ( 0 ,  t 0 ] , where y = ( y 1 ,  ,  y n ) ,   a i > 0 ,   i = 1 ,  ,  n are constants and t 0 > 0 . An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used. Particular attention is paid to construction of asymptotic expansions of solutions for certain classes of systems of integrodifferential equations in a right-hand neighbourhood of a singular point.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 918281, 18 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365168320

Digital Object Identifier
doi:10.1155/2012/918281

Mathematical Reviews number (MathSciNet)
MR3004875

Zentralblatt MATH identifier
1258.45005

Citation

Šmarda, Zdeněk; Khan, Yasir. Singular Initial Value Problem for a System of Integro-Differential Equations. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 918281, 18 pages. doi:10.1155/2012/918281. https://projecteuclid.org/euclid.aaa/1365168320


Export citation

References

  • R. P. Agarwal, D. O'Regan, and O. E. Zernov, “A singular initial value problem for some functional differential equations,” Journal of Applied Mathematics and Stochastic Analysis, vol. 2004, no. 3, pp. 261–270, 2004.
  • V. A. Čečik, “Investigation of systems of ordinary differential equations with a singularity,” Trudy Moskovskogo Matematičeskogo Obščestva, vol. 8, pp. 155–198, 1959 (Russian).
  • I. Diblík, “Asymptotic behavior of solutions of a differential equation partially solved with respect to the derivative,” Siberian Mathematical Journal, vol. 23, no. 5, pp. 654–662, 1982 (Russian).
  • J. Diblík, “Existence of solutions of a real system of ordinary differential equations entering into a singular point,” Ukrainian Mathematical Journal, vol. 38, no. 6, pp. 588–592, 1986 (Russian).
  • J. Baštinec and J. Diblík, “On existence of solutions of a singular Cauchy-Nicoletti problem for a system of integro-differential equations,” Demonstratio Mathematica, vol. 30, no. 4, pp. 747–760, 1997.
  • J. Diblík, “On the existence of $\sum _{k=1}^{n}({a}_{k1}t+{a}_{k2}x){({x}^{'})}^{k}={b}_{1}t+{b}_{2}x+f(t,x,{x}^{'}),x(0)=0$-curves of a singular system of differential equations,” Mathematische Nachrichten, vol. 122, pp. 247–258, 1985 (Russian).
  • J. Diblík and C. Nowak, “A nonuniqueness criterion for a singular system of two ordinary differential equations,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 64, no. 4, pp. 637–656, 2006.
  • J. Diblík and M. R\accent23užičková, “Existence of positive solutions of a singular initial problem for a nonlinear system of differential equations,” The Rocky Mountain Journal of Mathematics, vol. 34, no. 3, pp. 923–944, 2004.
  • J. Diblík and M. R. R\accent23užičková, “Inequalities for solutions of singular initial problems for Caratheodory systems via Ważewski's principle,” Nonlinear Analysis: Theory, Methods and Applications, vol. 69, no. 12, pp. 657–656, 2008.
  • Z. Šmarda, “On the uniqueness of solutions of the singular problem for certain class of integro-differential equations,” Demonstratio Mathematica, vol. 25, no. 4, pp. 835–841, 1992.
  • Z. Šmarda, “On a singular initial value problem for a system of integro-differential equations depending on a parameter,” Fasciculi Mathematici, no. 25, pp. 123–126, 1995.
  • Z. Šmarda, “On an initial value problem for singular integro-differential equations,” Demonstratio Mathematica, vol. 35, no. 4, pp. 803–811, 2002.
  • Z. Šmarda, “Implicit singular integrodifferential equations of Fredholm type,” Tatra Mountains Mathematical Publications, vol. 38, pp. 255–263, 2007.
  • A. E. Zernov and Yu. V. Kuzina, “Qualitative investigation of the singular Cauchy problem $\sum _{k=1}^{n}({a}_{k1}t+{a}_{k2}x){({x}^{\prime })}^{k}={b}_{1}t+{b}_{2}x+f(t,x,{x}^{\prime }),x(0)=0$,” Ukrainian Mathematical Journal, vol. 55, no. 10, pp. 1419–1424, 2003 (Russian).
  • A. E. Zernov and Yu. V. Kuzina, “Geometric analysis of a singular Cauchy problem,” Nonlinear Oscillations, vol. 7, no. 1, pp. 67–80, 2004 (Russian).
  • A. E. Zernov and O. R. Chaĭchuk, “Asymptotic behavior of solutions of a singular Cauchy problem for a functional-differential equation,” Journal of Mathematical Sciences, vol. 160, no. 1, pp. 123–135, 2009.
  • R. Srzednicki, “Ważewski method and Conley index,” in Handbook of Differential Equations: Ordinary Differential Equations, A. Canada, P. Drabek, and A. Fonda, Eds., vol. 1, pp. 591–684, Elsevier, Amsterdam, The Netherlands, 2004.
  • P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1964.
  • E. Zeidler, Applied Functional Analysis: Applications to Mathematical Physics, vol. 108 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1999.