Abstract and Applied Analysis

Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions

Arif A. M. Yunus, Ali H. M. Murid, and Mohamed M. S. Nasser

Full-text: Open access

Abstract

We present a boundary integral equation method for conformal mapping of unbounded multiply connected regions onto five types of canonical slit regions. For each canonical region, three linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic function on an unbounded multiply connected region. The integral equations are uniquely solvable. The kernels involved in these integral equations are the modified Neumann kernels and the adjoint generalized Neumann kernels.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 293765, 29 pages.

Dates
First available in Project Euclid: 5 April 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1365168185

Digital Object Identifier
doi:10.1155/2012/293765

Mathematical Reviews number (MathSciNet)
MR2975275

Zentralblatt MATH identifier
1267.30020

Citation

Yunus, Arif A. M.; Murid, Ali H. M.; Nasser, Mohamed M. S. Conformal Mapping of Unbounded Multiply Connected Regions onto Canonical Slit Regions. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 293765, 29 pages. doi:10.1155/2012/293765. https://projecteuclid.org/euclid.aaa/1365168185


Export citation

References

  • V. V. Andreev, D. Daniel, and T. H. McNicholl, “Technical report: Computation on the extended complex plane and conformal mapping of multiply-connected domains,” in Proceedings of the 5th International Conference on Computability and Complexity in Analysis (CCA '08), vol. 221 of Electronic Notes in Theoretical Computer Science, pp. 127–139, Elsevier, 2008.
  • G. C. Wen, Conformal Mapping and Boundary Values Problems, vol. 106 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 1992, English translation of Chinese edition, 1984.
  • Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1952.
  • P. Henrici, Applied and Computational Complex Analysis. Vol. 3, Pure and Applied Mathematics, John Wiley & Sons, New York, NY, USA, 1986.
  • L. N. Trefethen, Ed., Numerical Conformal Mapping, North-Holland, Amsterdam, The Netherlands, 1986.
  • K. Amano, “A charge simulation method for numerical conformal mapping onto circular and radial slit domains,” SIAM Journal on Scientific Computing, vol. 19, no. 4, pp. 1169–1187, 1998.
  • T. K. DeLillo, T. A. Driscoll, A. R. Elcrat, and J. A. Pfaltzgraff, “Radial and circular slit maps of unbounded multiply connected circle domains,” Proceedings of The Royal Society of London Series A, vol. 464, no. 2095, pp. 1719–1737, 2008.
  • A. H. M. Murid, Boundary integral equation approach for numerical conformal mapping [Ph.D. thesis], Universiti Teknologi Malaysia, 1999.
  • A. H. M. Murid and M. R. M. Razali, “An integral equation method for conformal mapping of doubly connected regions,” Matematika, vol. 15, no. 2, pp. 79–93, 1999.
  • A. H. M. Murid and L.-N. Hu, “Numerical experiment on conformal mapping of doubly connected regions onto a disk with a slit,” International Journal of Pure and Applied Mathematics, vol. 51, no. 4, pp. 589–608, 2009.
  • M. M. S. Nasser, “A boundary integral equation for conformal mapping of bounded multiply connected regions,” Computational Methods and Function Theory, vol. 9, no. 1, pp. 127–143, 2009.
  • M. M. S. Nasser, “Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 1695–1715, 2009.
  • M. M. S. Nasser, “Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe's canonical slit domains,” Journal of Mathematical Analysis and Applications, vol. 382, no. 1, pp. 47–56, 2011.
  • A. W. K. Sangawi, A. H. M. Murid, and M. M. S. Nasser, “Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits,” Applied Mathematics and Computation, vol. 218, no. 5, pp. 2055–2068, 2011.
  • A. W. K. Sangawi, A. H. M. Murid, and M. M. S. Nasser, “Annulus with circular slit map of bounded multiply connected regions via integral equation method,” Bulletin of Malaysian Mathematical Sciences Society. In press.
  • A. W. K. Sangawi, A. H. M. Murid, and M. M. S. Nasser, “Circular slits map of bounded multiply connected regions,” Abstract and Applied Analysis, vol. 2012, Article ID 970928, 26 pages, 2012.
  • A. W. K. Sangawi, A. H. M. Murid, and M. M. S. Nasser, “Parallel slits map of bounded multiply connected regions,” Journal of Mathematical Analysis and Applications, vol. 389, no. 2, pp. 1280–1290, 2012.
  • R. Wegmann and M. M. S. Nasser, “The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 36–57, 2008.
  • M. M. S. Nasser, A. H. M. Murid, M. Ismail, and E. M. A. Alejaily, “Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions,” Applied Mathematics and Computation, vol. 217, no. 9, pp. 4710–4727, 2011.
  • F. D. Gakhov, Boundary Value Problems, Translation edited by I. N. Sneddon, Pergamon Press, Oxford, UK, 1966, English translation of Russian edition, 1963.
  • K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, vol. 4 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 1997.