Abstract and Applied Analysis

n -Bazilevic Functions

F. M. Al-Oboudi

Full-text: Open access


The aim of this paper is to define and study a class of Bazilevic functions using the generalized Salagean operator. Some properties of this class are investigated: inclusion relation, some convolution properties, coefficient bounds, and other interesting results.

Article information

Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 383592, 10 pages.

First available in Project Euclid: 1 April 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Al-Oboudi, F. M. $n$ -Bazilevic Functions. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 383592, 10 pages. doi:10.1155/2012/383592. https://projecteuclid.org/euclid.aaa/1364845156

Export citation


  • T. Sheil-Small, “The Hadamard product and linear transformations of classes of analytic functions,” Journal d'Analyse Mathematique, vol. 34, pp. 204–239, 1978.
  • I. E. Bazilevic, “On a case of integrability in quadratures of the Loewner-Kufarev equation,” Matema- ticheskii Sbornik, vol. 37, pp. 471–476, 1955.
  • M. Arif, K. I. Noor, and M. Raza, “On a class of analytic functions related with generalized Bazilevic type functions,” Computers and Mathematics with Applications, vol. 61, no. 9, pp. 2456–2462, 2011.
  • Y. C. Kim, “A note on growth theorem of Bazilevic functions,” Applied Mathematics and Computation, vol. 208, no. 2, pp. 542–546, 2009.
  • A. T. Oladipo, “On a new subfamilies of Bazilevic functions,” Acta Universitatis Apulensis, no. 29, pp. 165–185, 2012.
  • Q. Deng, “On the coefficients of Bazilevic functions and circularly symmetric functions,” Applied Mathematics Letters, vol. 24, no. 6, pp. 991–995, 2011.
  • T. Sheil-Small, “Some remarks on Bazilevic functions,” Journal d'Analyse Mathematique, vol. 43, pp. 1–11, 1983.
  • F. M. Al-Oboudi, “On univalent functions defined by a generalized Salagean operator,” International Journal of Mathematics and Mathematical Sciences, no. 25–28, pp. 1429–1436, 2004.
  • G. S. Salagean, “Subclasses of univalent functions,” in Complex Analysis, Fifth Romanian-Finnish Semi- nar, Part 1 (Bucharest, 1981), vol. 1013 of Lecture Notes in Mathematics, pp. 362–372, Springer, Berlin, Germany, 1983.
  • St. Ruscheweyh, Convolutions in Geometric Function Theory, vol. 83 of Seminaire de Mathematiques Super- ieures, Presses de l'Universite de Montreal, Montreal, Canada, 1982.
  • A. Cătaş, G. I. Oros, and G. Oros, “Differential subordinations associated with multiplier transforma- tions,” Abstract and Applied Analysis, vol. 2008, Article ID 845724, 11 pages, 2008.
  • M. Darus and I. Faisal, “A study on Becker's univalence criteria,” Abstract and Applied Analysis, vol. 2011, Article ID 759175, 13 pages, 2011.
  • D. Blezu, “On the n-close-to-convex functions with respect to a convex set. I,” Mathematica Revue d'Analyse Numérique et de Théorie de l'Approximation, vol. 28(51), no. 1, pp. 9–19, 1986.
  • W. Kaplan, “Close-to-convex schlicht functions,” The Michigan Mathematical Journal, vol. 1, pp. 169–185, 1952.
  • S. Abdul Halim, “On a class of analytic functions involving the Salagean differential operator,” Tam- kang Journal of Mathematics, vol. 23, no. 1, pp. 51–58, 1992.
  • T. O. Opoola, “On a new subclass of univalent functions,” Mathematica, vol. 36, no. 2, pp. 195–200, 1994.
  • H. S. Al-Amiri, “On the Hadamard products of schlicht functions and applications,” International Journal of Mathematics and Mathematical Sciences, vol. 8, no. 1, pp. 173–177, 1985.
  • R. W. Barnard and C. Kellogg, “Applications of convolution operators to problems in univalent func- tion theory,” The Michigan Mathematical Journal, vol. 27, no. 1, pp. 81–94, 1980.
  • J. Zamorski, “On Bazilevic schlicht functions,” Annales Polonici Mathematici, vol. 12, pp. 83–90, 1962.