Abstract and Applied Analysis

Generalized Difference Spaces of Non-Absolute Type of Convergent and Null Sequences

Abdulcabbar Sönmez and Feyzi Başar

Full-text: Open access

Abstract

The aim of the present paper is to introduce the spaces c 0 λ ( B ) and c λ ( B ) of generalized difference sequences which generalize the paper due to Mursaleen and Noman (2010). These spaces are the BK-spaces of non-absolute type and norm isomorphic to the spaces c 0 and c , respectively. Furthermore, we derive some inclusion relations determine the α - , β - , and γ - duals of those spaces, and construct their Schauder bases. Finally, we characterize some matrix classes from the spaces c 0 λ ( B ) , and c λ ( B ) to the spaces p , c 0 , and c.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 435076, 20 pages.

Dates
First available in Project Euclid: 28 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1364475918

Digital Object Identifier
doi:10.1155/2012/435076

Mathematical Reviews number (MathSciNet)
MR2994943

Zentralblatt MATH identifier
1267.46017

Citation

Sönmez, Abdulcabbar; Başar, Feyzi. Generalized Difference Spaces of Non-Absolute Type of Convergent and Null Sequences. Abstr. Appl. Anal. 2012 (2012), Article ID 435076, 20 pages. doi:10.1155/2012/435076. https://projecteuclid.org/euclid.aaa/1364475918


Export citation

References

  • B. Choudhary and S. Nanda, Functional Analysis with Applications, John Wiley & Sons, New Delhi, India, 1989.
  • B. Altay and F. Başar, “On the paranormed Riesz sequence spaces of non-absolute type,” Southeast Asian Bulletin of Mathematics, vol. 26, no. 5, pp. 701–715, 2003.
  • B. Altay and F. Başar, “Some Euler sequence spaces of nonabsolute type,” Ukrainian Mathematical Journal, vol. 57, no. 1, pp. 3–17, 2005.
  • B. Altay, F. Başar, and M. Mursaleen, “On the Euler sequence spaces which include the spaces ${l}_{p}$ and ${l}_{\infty }$. I,” Information Sciences, vol. 176, no. 10, pp. 1450–1462, 2006.
  • C. Ayd\in and F. Başar, “On the new sequence spaces which include the spaces ${c}_{0}$ and $c$,” Hokkaido Mathematical Journal, vol. 33, no. 2, pp. 383–398, 2004.
  • C. Ayd\in and F. Başar, “Some new paranormed sequence spaces,” Information Sciences, vol. 160, no. 1–4, pp. 27–40, 2004.
  • C. Ayd\in and F. Başar, “Some new sequence spaces which include the spaces ${l}_{P}$ and ${l}_{\infty }$,” Demonstratio Mathematica, vol. 38, no. 3, pp. 641–656, 2005.
  • E. Malkowsky, “Recent results in the theory of matrix transformations in sequence spaces,” Matematichki Vesnik, vol. 49, no. 3-4, pp. 187–196, 1997.
  • E. Malkowsky and E. Savas, “Matrix transformations between sequence spaces of generalized weighted means,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 333–345, 2004.
  • P. N. Ng and P. Y. Lee, “Cesàro sequence spaces of non-absolute type,” Commentationes Mathematicae. Prace Matematyczne, vol. 20, no. 2, pp. 429–433, 1978.
  • M. Şengönül and F. Başar, “Some new Cesàro sequence spaces of non-absolute type which include the spaces ${c}_{0}$ and $c$,” Soochow Journal of Mathematics, vol. 31, no. 1, pp. 107–119, 2005.
  • A. Sönmez, “Some new sequence spaces derived by the domain of the triple band matrix,” Computers & Mathematics with Applications, vol. 62, no. 2, pp. 641–650, 2011.
  • A. Sönmez, “čommentComment on ref. [25?]: Please update the information of this reference, if possible.Almost convergence and triple band matrix,” Mathematical and Computer Modelling. In press.
  • C. S. Wang, “On Nörlund sequence spaces,” Tamkang Journal of Mathematics, vol. 9, no. 2, pp. 269–274, 1978.
  • M. Başar\ir, “On some new sequence spaces and related matrix transformations,” Indian Journal of Pure and Applied Mathematics, vol. 26, no. 10, pp. 1003–1010, 1995.
  • B. Altay, F. Başar, and E. Malkowsky, “Matrix transformations on some sequence spaces related to strong Cesàro summability and boundedness,” Applied Mathematics and Computation, vol. 211, no. 2, pp. 255–264, 2009.
  • C. Ayd\in and F. Başar, “Some new difference sequence spaces,” Applied Mathematics and Computation, vol. 157, no. 3, pp. 677–693, 2004.
  • F. Başar and B. Altay, “On the space of sequences of $p$-bounded variation and related matrix mappings,” Ukrainian Mathematical Journal, vol. 55, no. 1, pp. 136–147, 2003.
  • H. K\izmaz, “On certain sequence spaces,” Canadian Mathematical Bulletin, vol. 24, no. 2, pp. 169–176, 1981.
  • E. Malkowsky, M. Mursaleen, and S. Suantai, “The dual spaces of sets of difference sequences of order $m$ and matrix transformations,” Acta Mathematica Sinica, vol. 23, no. 3, pp. 521–532, 2007.
  • M. Mursaleen and A. K. Noman, “On some new difference sequence spaces of non-absolute type,” Mathematical and Computer Modelling, vol. 52, no. 3-4, pp. 603–617, 2010.
  • M. Mursaleen and A. K. Noman, “On the spaces of $\lambda $-convergent and bounded sequences,” Thai Journal of Mathematics, vol. 8, no. 2, pp. 311–329, 2010.
  • I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, Cambridge, UK, 2nd edition, 1988.
  • A. Wilansky, Summability Throught Functional Analysis, vol. 85 of North-Holland Mathematics Studies, North-Holland, Oxford, UK, 1984.
  • M. Stieglitz and H. Tietz, “Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht,” Mathematische Zeitschrift, vol. 154, no. 1, pp. 1–16, 1977.
  • M. A. Sar\igöl, “On difference sequence spaces,” Journal of Karadeniz Technical University, vol. 10, pp. 63–71, 1987.
  • B. Altay and F. Başar, “The fine spectrum and the matrix domain of the difference operator $\Delta $ on the sequence space ${l}_{p},(0<P<1)$,” Communications in Mathematical Analysis, vol. 2, no. 2, pp. 1–11, 2007.
  • R. Çolak, M. Et, and E. Malkowsky, Some Topics of Sequence Spaces, Lecture Notes in Mathematics, F\irat University Press, 2004.
  • E. Malkowsky, V. Rakočević, and S. Živković, “Matrix transformations between the sequence space $b{v}^{p}$ and certain BK spaces,” Bulletin. Classe des Sciences Mathématiques et Naturelles. Sciences Mathématiques, no. 27, pp. 33–46, 2002.