Open Access
2012 The Convergence and MS Stability of Exponential Euler Method for Semilinear Stochastic Differential Equations
Chunmei Shi, Yu Xiao, Chiping Zhang
Abstr. Appl. Anal. 2012: 1-19 (2012). DOI: 10.1155/2012/350407

Abstract

The numerical approximation of exponential Euler method is constructed for semilinear stochastic differential equations (SDEs). The convergence and mean-square (MS) stability of exponential Euler method are investigated. It is proved that the exponential Euler method is convergent with the strong order 1 / 2 for semilinear SDEs. A mean-square linear stability analysis shows that the stability region of exponential Euler method contains that of EM method and stochastic Theta method ( 0 θ < 1 ) and also contains that of the scale linear SDE, that is, exponential Euler method is analogue mean-square A-stable. Then the exponential stability of the exponential Euler method for scalar semi-linear SDEs is considered. Under the conditions that guarantee the analytic solution is exponentially stable in mean-square sense, the exponential Euler method can reproduce the mean-square exponential stability for any nonzero stepsize. Numerical experiments are given to verify the conclusions.

Citation

Download Citation

Chunmei Shi. Yu Xiao. Chiping Zhang. "The Convergence and MS Stability of Exponential Euler Method for Semilinear Stochastic Differential Equations." Abstr. Appl. Anal. 2012 1 - 19, 2012. https://doi.org/10.1155/2012/350407

Information

Published: 2012
First available in Project Euclid: 28 March 2013

zbMATH: 1253.65009
MathSciNet: MR2965478
Digital Object Identifier: 10.1155/2012/350407

Rights: Copyright © 2012 Hindawi

Vol.2012 • 2012
Back to Top