Abstract and Applied Analysis

Homotopy Method for a General Multiobjective Programming Problem under Generalized Quasinormal Cone Condition

X. Zhao, S. G. Zhang, Y. T. Yang, and Q. H. Liu

Full-text: Open access

Abstract

A combined interior point homotopy continuation method is proposed for solving general multiobjective programming problem. We prove the existence and convergence of a smooth homotopy path from almost any interior initial interior point to a solution of the KKT system under some basic assumptions.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 591612, 12 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495850

Digital Object Identifier
doi:10.1155/2012/591612

Mathematical Reviews number (MathSciNet)
MR2965480

Zentralblatt MATH identifier
1253.65104

Citation

Zhao, X.; Zhang, S. G.; Yang, Y. T.; Liu, Q. H. Homotopy Method for a General Multiobjective Programming Problem under Generalized Quasinormal Cone Condition. Abstr. Appl. Anal. 2012 (2012), Article ID 591612, 12 pages. doi:10.1155/2012/591612. https://projecteuclid.org/euclid.aaa/1355495850


Export citation

References

  • V. Pareto, Course Economic Politique, Rouge, Lausanne, Switzerland, 1896.
  • J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, USA, 1944.
  • T. C. Koopmans, Activity Analysis of Production and Allocation, Wiley, New York, NY, USA, 1951.
  • R. B. Kellogg, T. Y. Li, and J. Yorke, “A constructive proof the Brouwer fixed-point theorem and computational results,” SIAM Journal on Numerical Analysis, vol. 18, no. 4, pp. 473–483, 1976.
  • S. Smale, “A convergent process of price adjustment and global newton methods,” Journal of Mathematical Economics, vol. 3, no. 2, pp. 107–120, 1976.
  • S. N. Chow, P. J. Mallet, and J. A. York, “Finding zero of maps: homotopy methods that are constructive with probability one,” Mathematics of Computation, vol. 32, pp. 887–899, 1978.
  • M. S. Gowda, “On the extended linear complementarity problem,” Mathematical Programming Series B, vol. 72, no. 1, pp. 33–50, 1996.
  • F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, NY, USA, 2003.
  • Y. F. Shang and B. Yu, “A constraint shifting homotopy method for convex multi-objective programming,” Journal of Computational and Applied Mathematics, vol. 236, pp. 640–646, 2011.
  • G. P. McCormick, “Projective SUMT method for convex programming,” Mathematics of Operations Research, vol. 14, no. 2, pp. 203–223, 1989.
  • R. D. C. Monteroro and I. Adler, “An extension of karmarkar type algorithm to a class of convex separable programming problems with global linear rate of convergence,” Mathematics of Operations Research, vol. 15, pp. 408–422, 1990.
  • Z. Lin, B. Yu, and G. Feng, “A combined homotopy interior point method for convex nonlinear programming,” Applied Mathematics and Computation, vol. 84, no. 2-3, pp. 193–211, 1997.
  • Z. H. Lin, D. L. Zhu, and Z. P. Sheng, “Finding a minimal efficient solution of a convex multiobjective program,” Journal of Optimization Theory and Applications, vol. 118, no. 3, pp. 587–600, 2003.
  • W. Song and G. M. Yao, “Homotopy method for a general multiobjective programming problem,” Journal of Optimization Theory and Applications, vol. 138, no. 1, pp. 139–153, 2008.
  • X. Zhao, S. G. Zhang, and Q. H. Liu, “Homotopy interior-point method for a general multiobjectuve programming problem,” Journal of Applied Mathematics, vol. 2012, Article ID 497345, 12 pages, 2012.
  • Z. S. Zhang, Introduction to Differential Topology, Beijing University Press, Beijing, China, 2002.
  • G. L. Naber, Topological Methods in Euclidean Space, Cambridge University Press, London, USA, 1980.