Abstract and Applied Analysis

A Note on Property ( g b ) and Perturbations

Qingping Zeng and Huaijie Zhong

Full-text: Open access

Abstract

An operator T ( X ) defined on a Banach space X satisfies property ( g b ) if the complement in the approximate point spectrum σ a ( T ) of the upper semi-B-Weyl spectrum σ S B F + - ( T ) coincides with the set Π ( T ) of all poles of the resolvent of T . In this paper, we continue to study property ( g b ) and the stability of it, for a bounded linear operator T acting on a Banach space, under perturbations by nilpotent operators, by finite rank operators, and by quasinilpotent operators commuting with T . Two counterexamples show that property ( g b ) in general is not preserved under commuting quasi-nilpotent perturbations or commuting finite rank perturbations.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 523986, 10 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495824

Digital Object Identifier
doi:10.1155/2012/523986

Mathematical Reviews number (MathSciNet)
MR2965440

Zentralblatt MATH identifier
1252.47012

Citation

Zeng, Qingping; Zhong, Huaijie. A Note on Property $(gb)$ and Perturbations. Abstr. Appl. Anal. 2012 (2012), Article ID 523986, 10 pages. doi:10.1155/2012/523986. https://projecteuclid.org/euclid.aaa/1355495824


Export citation

References

  • H.-O. Tylli, “On the asymptotic behaviour of some quantities related to semi-Fredholm operators,” Journal of the London Mathematical Society, vol. 31, no. 2, pp. 340–348, 1985.
  • V. Rakočević, “Semi-Browder operators and perturbations,” Studia Mathematica, vol. 122, no. 2, pp. 131–137, 1997.
  • M. Berkani and M. Sarih, “On semi B-Fredholm operators,” Glasgow Mathematical Journal, vol. 43, no. 3, pp. 457–465, 2001.
  • R. Harte and W. Y. Lee, “Another note on Weyl's theorem,” Transactions of the American Mathematical Society, vol. 349, no. 5, pp. 2115–2124, 1997.
  • S. V. Djordjević and Y. M. Han, “Browder's theorems and spectral continuity,” Glasgow Mathematical Journal, vol. 42, no. 3, pp. 479–486, 2000.
  • M. Berkani and H. Zariouh, “Extended Weyl type theorems,” Mathematica Bohemica, vol. 134, no. 4, pp. 369–378, 2009.
  • M. Berkani and J. J. Koliha, “Weyl type theorems for bounded linear operators,” Acta Scientiarum Mathematicarum, vol. 69, no. 1-2, pp. 359–376, 2003.
  • M. Amouch and H. Zguitti, “On the equivalence of Browder's and generalized Browder's theorem,” Glasgow Mathematical Journal, vol. 48, no. 1, pp. 179–185, 2006.
  • N. Dunford, “Spectral theory. II. Resolutions of the identity,” Pacific Journal of Mathematics, vol. 2, pp. 559–614, 1952.
  • N. Dunford, “Spectral operators,” Pacific Journal of Mathematics, vol. 4, pp. 321–354, 1954.
  • P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.
  • K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, vol. 20, Oxford University Press, New York, NY, USA, 2000.
  • M. Berkani and H. Zariouh, “New extended Weyl type theorems,” Matematichki Vesnik, vol. 62, no. 2, pp. 145–154, 2010.
  • M. Berkani and H. Zariouh, “Extended Weyl type theorems and perturbations,” Mathematical Proceedings of the Royal Irish Academy, vol. 110A, no. 1, pp. 73–82, 2010.
  • M. H. M. Rashid, “Property (gb) and perturbations,” Journal of Mathematical Analysis and Applications, vol. 383, no. 1, pp. 82–94, 2011.
  • P. Aiena, “Quasi-Fredholm operators and localized SVEP,” Acta Scientiarum Mathematicarum, vol. 73, no. 1-2, pp. 251–263, 2007.
  • P. Aiena, M. T. Biondi, and C. Carpintero, “On Drazin invertibility,” Proceedings of the American Mathematical Society, vol. 136, no. 8, pp. 2839–2848, 2008.
  • M. Mbekhta and V. Müller, “On the axiomatic theory of spectrum. II,” Studia Mathematica, vol. 119, no. 2, pp. 129–147, 1996.
  • M. A. Kaashoek and D. C. Lay, “Ascent, descent, and commuting perturbations,” Transactions of the American Mathematical Society, vol. 169, pp. 35–47, 1972.
  • O. Bel Hadj Fredj, M. Burgos, and M. Oudghiri, “Ascent spectrum and essential ascent spectrum,” Studia Mathematica, vol. 187, no. 1, pp. 59–73, 2008.
  • S. Grabiner, “Uniform ascent and descent of bounded operators,” Journal of the Mathematical Society of Japan, vol. 34, no. 2, pp. 317–337, 1982.
  • P. A. Fillmore and J. P. Williams, “On operator ranges,” Advances in Mathematics, vol. 7, pp. 254–281, 1971.
  • S. Grabiner, “Ranges of products of operators,” Canadian Journal of Mathematics, vol. 26, pp. 1430–1441, 1974.
  • M. Berkani, “Restriction of an operator to the range of its powers,” Studia Mathematica, vol. 140, no. 2, pp. 163–175, 2000.
  • M. Mbekhta, “Résolvant Généralisé et Théorie Spectrale,” Journal of Operator Theory, vol. 21, no. 1, pp. 69–105, 1989.
  • M. Berkani, N. Castro, and S. V. Djordjević, “Single valued extension property and generalized Weyl's theorem,” Mathematica Bohemica, vol. 131, no. 1, pp. 29–38, 2006.
  • X. Cao, “Topological uniform descent and Weyl type theorem,” Linear Algebra and its Applications, vol. 420, no. 1, pp. 175–182, 2007.
  • Q. Jiang, H. Zhong, and Q. Zeng, “Topological uniform descent and localized SVEP,” Journal of Mathematical Analysis and Applications, vol. 390, no. 1, pp. 355–361, 2012.
  • Q. Zeng, H. Zhong, and Z. Wu, “Small essential spectral radius perturbations of operators with topological uniform descent,” Bulletin of the Australian Mathematical Society, vol. 85, no. 1, pp. 26–45, 2012.